Separating vectors for operators

Authors:
D. Han, D. Larson, Z. Pan and W. Wogen

Journal:
Proc. Amer. Math. Soc. **135** (2007), 713-723

MSC (2000):
Primary 47A10, 47A65, 47A66, 47B99

Published electronically:
October 19, 2006

MathSciNet review:
2262867

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: It is an open problem whether every one-dimensional extension of a triangular operator admits a separating vector. We prove that the answer is positive for many triangular Hilbert space operators, and in particular, for strictly triangular operators. This is revealing, because two-dimensional extensions of such operators can fail to have separating vectors.

**[AS1]**E. Azoff and H. Shehada,*Algebras generated by mutually orthogonal idempotent operators*, J. Operator Theory**29**(1993), no. 2, 249–267. MR**1284883****[AS2]**E. A. Azoff and H. A. Shehada,*Literal embeddings of linear spaces of operators*, Indiana Univ. Math. J.**42**(1993), no. 2, 571–589. MR**1237060**, 10.1512/iumj.1993.42.42026**[Co]**John B. Conway,*A course in functional analysis*, Graduate Texts in Mathematics, vol. 96, Springer-Verlag, New York, 1985. MR**768926****[GLW]**W. Gong, D. R. Larson, and W. R. Wogen,*Two results on separating vectors*, Indiana Univ. Math. J.**43**(1994), no. 4, 1159–1165. MR**1322615**, 10.1512/iumj.1994.43.43051**[HN]**D. W. Hadwin and E. A. Nordgren,*Subalgebras of reflexive algebras*, J. Operator Theory**7**(1982), no. 1, 3–23. MR**650190****[HLPW]**D. Han, D. Larson, Z. Pan, and W. Wogen,*Extensions of operators*, Indiana Univ. Math. J.**53**(2004), no. 4, 1151–1169. MR**2095452**, 10.1512/iumj.2004.53.2450**[H]**Domingo A. Herrero,*Triangular operators*, Bull. London Math. Soc.**23**(1991), no. 6, 513–554. MR**1135184**, 10.1112/blms/23.6.513**[HLW]**Domingo A. Herrero, David R. Larson, and Warren R. Wogen,*Semitriangular operators*, Houston J. Math.**17**(1991), no. 4, 477–499. MR**1147270****[L]**David R. Larson,*Reflexivity, algebraic reflexivity and linear interpolation*, Amer. J. Math.**110**(1988), no. 2, 283–299. MR**935008**, 10.2307/2374503**[LW1]**David R. Larson and Warren R. Wogen,*Reflexivity properties of 𝑇⊕0*, J. Funct. Anal.**92**(1990), no. 2, 448–467. MR**1069253**, 10.1016/0022-1236(90)90058-S**[LW2]**David R. Larson and Warren R. Wogen,*Some problems on triangular and semi-triangular operators*, Selfadjoint and nonselfadjoint operator algebras and operator theory (Fort Worth, TX, 1990) Contemp. Math., vol. 120, Amer. Math. Soc., Providence, RI, 1991, pp. 97–100. MR**1126279**, 10.1090/conm/120/1126279**[LW3]**David R. Larson and Warren R. Wogen,*Extensions of normal operators*, Integral Equations Operator Theory**20**(1994), no. 3, 325–334. MR**1299891**, 10.1007/BF01205285**[LW4]**David R. Larson and Warren R. Wogen,*Extensions of bitriangular operators*, Integral Equations Operator Theory**25**(1996), no. 2, 216–223. MR**1388681**, 10.1007/BF01308631**[S]**Allen L. Shields,*Weighted shift operators and analytic function theory*, Topics in operator theory, Amer. Math. Soc., Providence, R.I., 1974, pp. 49–128. Math. Surveys, No. 13. MR**0361899****[W]**W. R. Wogen,*Some counterexamples in nonselfadjoint algebras*, Ann. of Math. (2)**126**(1987), no. 2, 415–427. MR**908152**, 10.2307/1971405

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (2000):
47A10,
47A65,
47A66,
47B99

Retrieve articles in all journals with MSC (2000): 47A10, 47A65, 47A66, 47B99

Additional Information

**D. Han**

Affiliation:
Department of Mathematics, University of Central Florida, Orlando, Florida 32816

Email:
dhan@pegasus.cc.ucf.edu

**D. Larson**

Affiliation:
Department of Mathematics, Texas A&M University, College Station, Texas 77843

Email:
larson@math.tamu.edu

**Z. Pan**

Affiliation:
Department of Mathematics, Saginaw Valley State University, University Center, Michigan 48710

Email:
Pan@svsu.edu

**W. Wogen**

Affiliation:
Department of Mathematics, University of North Carolina, Chapel Hill, North Carolina 27599

Email:
wrw@math.unc.edu

DOI:
https://doi.org/10.1090/S0002-9939-06-08486-3

Keywords:
Separating vector,
extension of operators,
triangular operator,
integral domain

Received by editor(s):
November 3, 2004

Received by editor(s) in revised form:
September 7, 2005

Published electronically:
October 19, 2006

Additional Notes:
The second author was supported in part by NSF grant DMS-0070796

Communicated by:
Joseph A. Ball

Article copyright:
© Copyright 2006
American Mathematical Society