Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Pseudofree $ \mathbb{Z}/3$-actions on $ K3$ surfaces


Authors: Ximin Liu and Nobuhiro Nakamura
Journal: Proc. Amer. Math. Soc. 135 (2007), 903-910
MSC (2000): Primary 57S17; Secondary 57S25, 57M60, 57R57
DOI: https://doi.org/10.1090/S0002-9939-06-08507-8
Published electronically: August 31, 2006
MathSciNet review: 2262889
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper, we give a weak classification of locally linear pseudofree actions of the cyclic group of order $ 3$ on a $ K3$ surface, and prove the existence of such an action which cannot be realized as a smooth action on the standard smooth $ K3$ surface.


References [Enhancements On Off] (What's this?)

  • 1. M. F. Atiyah and R. Bott, A Lefschetz fixed point formula for elliptic complexes II Applications, Ann. Math. 88 (1968), 451-491. MR 0232406 (38:731)
  • 2. M. F. Atiyah and F. Hirzebruch, Spin-manifolds and group actions, Essays on topology and related topics, Memoires dédié à George de Rham (ed. A. Haefliger and R. Narashimhan), Springer-Verlag (1970), 18-28. MR 0278334 (43:4064)
  • 3. S. Bauer and D. M. Wilczynski, On the topological classification of pseudofree group actions on $ 4$-manifolds: II, K-Theory, 10 (1996), 491-516. MR 1404413 (97m:57017)
  • 4. A. L. Edmonds and J. H. Ewing, Realizing forms and fixed point data in dimension four, Amer. J. Math. 114 (1992), 1103-1126. MR 1183533 (93i:57047)
  • 5. F. Fang, Smooth group actions on $ 4$-manifolds and Seiberg-Witten invariants, Internat. J. of Math. 9 (1998), 957-973. MR 1669590 (2000c:57074)
  • 6. R. Fintushel and R. Stern, Rational blowdown of smooth $ 4$-manifolds, J. Diff. Geom. 46 (1997), 181-235. MR 1484044 (98j:57047)
  • 7. M. H. Freedman, The topology of four-dimensional manifolds, J. Diff. Geom. 17 (1982), 357-453. MR 0679066 (84b:57006)
  • 8. R. Friedman and J. Morgan, On the differentiable classification of algebraic surfaces I,II, J. Diff. Geom. 77 (1988), 297-369, 371-398.
  • 9. -, Algebraic surfaces and Seiberg-Witten invariants, J. Algebraic Geom. 6 (1997), 445-479. MR 1487223 (99b:32045)
  • 10. -, Obstruction bundles, semi-regularity and Seiberg-Witten invariants, Comm. Anal. Geom. 7 (1999), 451-495. MR 1698386 (2000e:14074)
  • 11. K. Kiyono, Examples of unsmoothable group actions on $ \overset{n}\sharp S^2\times S^2$, in preparation.
  • 12. K. Kiyono and X. Liu, On spin alternating group actions on spin $ 4$-manifolds, in preparation.
  • 13. H. B. Lawson, Jr. and M.-L. Michelsohn, Spin geometry, Princeton Mathematical Series, volume 38, Princeton University Press, Princeton, NJ, 1989. MR 1031992 (91g:53001)
  • 14. N. Nakamura, Mod $ p$ vanishing theorem of Seiberg-Witten invariants for $ 4$-manifolds with $ \mathbb{Z}_p$-actions, preprint.
  • 15. P. Shanahan, The Atiyah-Singer index theorem, Lecture Notes in Mathematics, volume 638, Springer, Berlin, 1978. MR 0487910 (81m:58073)
  • 16. C. H. Taubes, The Seiberg-Witten invariant and symplectic forms, Math. Res. Lett. 1 (1994), 809-822. MR 1306023 (95j:57039)
  • 17. M. Ue, On the topology of elliptic surfaces-a survey, Amer. Math. Soc. Transl. 160 (1994), 95-123. MR 1308543

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 57S17, 57S25, 57M60, 57R57

Retrieve articles in all journals with MSC (2000): 57S17, 57S25, 57M60, 57R57


Additional Information

Ximin Liu
Affiliation: Department of Applied Mathematics, Dalian University of Technology, Dalian 116024, People’s Republic of China
Email: liudlut@yahoo.com

Nobuhiro Nakamura
Affiliation: Research Institute for Mathematical Sciences, Kyoto University, Kyoto, 606-8502, Japan
Email: nakamura@kurims.kyoto-u.ac.jp

DOI: https://doi.org/10.1090/S0002-9939-06-08507-8
Keywords: Group actions, locally linear, pseudofree, $K3$ surface, Seiberg-Witten invariants
Received by editor(s): July 10, 2005
Received by editor(s) in revised form: September 28, 2005
Published electronically: August 31, 2006
Communicated by: Ronald A. Fintushel
Article copyright: © Copyright 2006 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society