Bounds and a majorization for the real parts of the zeros of polynomials

Author:
Fuad Kittaneh

Journal:
Proc. Amer. Math. Soc. **135** (2007), 659-664

MSC (2000):
Primary 15A18, 15A42, 26C10, 30C15

DOI:
https://doi.org/10.1090/S0002-9939-06-08509-1

Published electronically:
August 31, 2006

MathSciNet review:
2262860

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We apply some eigenvalue inequalities to the real parts of the Frobenius companion matrices of monic polynomials to establish new bounds and a majorization for the real parts of the zeros of these polynomials.

**[1]**A. A. Abdurakhmanov,*The geometry of the Hausdorff domain in localization problems for the spectrum of arbitrary matrices*, Math. USSR-Sb.**59**(1988), 39-51. MR**0868600 (88e:47010)****[2]**Yuri A. Alpin, Mao-Ting Chien, and Lina Yeh,*The numerical radius and bounds for zeros of a polynomial*, Proc. Amer. Math. Soc.**131**(2003), no. 3, 725–730. MR**1937409**, https://doi.org/10.1090/S0002-9939-02-06623-6**[3]**Rajendra Bhatia,*Matrix analysis*, Graduate Texts in Mathematics, vol. 169, Springer-Verlag, New York, 1997. MR**1477662****[4]**Masatoshi Fujii and Fumio Kubo,*Operator norms as bounds for roots of algebraic equations*, Proc. Japan Acad.**49**(1973), 805–808. MR**0364310****[5]**Masatoshi Fujii and Fumio Kubo,*Buzano’s inequality and bounds for roots of algebraic equations*, Proc. Amer. Math. Soc.**117**(1993), no. 2, 359–361. MR**1088441**, https://doi.org/10.1090/S0002-9939-1993-1088441-X**[6]**Karl E. Gustafson and Duggirala K. M. Rao,*Numerical range*, Universitext, Springer-Verlag, New York, 1997. The field of values of linear operators and matrices. MR**1417493****[7]**R. A. Horn and C. R. Johnson,*Matrix Analysis*, Cambridge Univ. Press, Cambridge, 1985. MR**0832183 (87e:15001)****[8]**Roger A. Horn and Charles R. Johnson,*Topics in matrix analysis*, Cambridge University Press, Cambridge, 1991. MR**1091716****[9]**Fuad Kittaneh,*Singular values of companion matrices and bounds on zeros of polynomials*, SIAM J. Matrix Anal. Appl.**16**(1995), no. 1, 333–340. MR**1311437**, https://doi.org/10.1137/S0895479893260139**[10]**Fuad Kittaneh,*A numerical radius inequality and an estimate for the numerical radius of the Frobenius companion matrix*, Studia Math.**158**(2003), no. 1, 11–17. MR**2014548**, https://doi.org/10.4064/sm158-1-2**[11]**Fuad Kittaneh,*Bounds for the zeros of polynomials from matrix inequalities*, Arch. Math. (Basel)**81**(2003), no. 5, 601–608. MR**2029723**, https://doi.org/10.1007/s00013-003-0525-6**[12]**Hansjörg Linden,*Bounds for the zeros of polynomials from eigenvalues and singular values of some companion matrices*, Linear Algebra Appl.**271**(1998), 41–82. MR**1485162****[13]**Hansjörg Linden,*Numerical radii of some companion matrices and bounds for the zeros of polynomials*, Analytic and geometric inequalities and applications, Math. Appl., vol. 478, Kluwer Acad. Publ., Dordrecht, 1999, pp. 205–229. MR**1785871****[14]**Morris Marden,*Geometry of polynomials*, Second edition. Mathematical Surveys, No. 3, American Mathematical Society, Providence, R.I., 1966. MR**0225972****[15]**A. W. Marshall and I. Olkin,*Inequalities: Theory of Majorization and Its Applications*, Academic Press, New York, 1979. MR**0552278 (81b:00002)****[16]**G. Schmeisser,*Sharp inequalities for the zeros of polynomials and power series*, Results Math.**39**(2001), no. 3-4, 333–344. MR**1834579**, https://doi.org/10.1007/BF03322693

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (2000):
15A18,
15A42,
26C10,
30C15

Retrieve articles in all journals with MSC (2000): 15A18, 15A42, 26C10, 30C15

Additional Information

**Fuad Kittaneh**

Affiliation:
Department of Mathematics, University of Jordan, Amman, Jordan

Email:
fkitt@ju.edu.jo

DOI:
https://doi.org/10.1090/S0002-9939-06-08509-1

Keywords:
Frobenius companion matrix,
zeros of polynomials,
eigenvalue,
majorization

Received by editor(s):
August 9, 2004

Received by editor(s) in revised form:
September 28, 2005

Published electronically:
August 31, 2006

Communicated by:
Joseph A. Ball

Article copyright:
© Copyright 2006
American Mathematical Society

The copyright for this article reverts to public domain 28 years after publication.