Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

On the Hartshorne-Speiser-Lyubeznik theorem about Artinian modules with a Frobenius action


Author: Rodney Y. Sharp
Journal: Proc. Amer. Math. Soc. 135 (2007), 665-670
MSC (2000): Primary 13A35, 13E10, 16S36; Secondary 13D45
DOI: https://doi.org/10.1090/S0002-9939-06-08606-0
Published electronically: August 28, 2006
MathSciNet review: 2262861
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ R$ be a commutative Noetherian local ring of prime characteristic. The purpose of this paper is to provide a short proof of G. Lyubeznik's extension of a result of R. Hartshorne and R. Speiser about a module over the skew polynomial ring $ R[x,f]$ (associated to $ R$ and the Frobenius homomorphism $ f$, in the indeterminate $ x$) that is both $ x$-torsion and Artinian over $ R$.


References [Enhancements On Off] (What's this?)

  • 1. M. Auslander and D. A. Buchsbaum, Codimension and multiplicity, Annals of Math. 68 (1958) 625-657. MR 0099978 (20:6414)
  • 2. R. Hartshorne and R. Speiser, Local cohomological dimension in characteristic $ p$, Annals of Math. 105 (1977) 45-79. MR 0441962 (56:353)
  • 3. M. Hochster and C. Huneke, Localization and test exponents for tight closure, Michigan Math. J. 48 (2000) 305-329. MR 1786493 (2002a:13001)
  • 4. C. Huneke and R. Y. Sharp, Bass numbers of local cohomology modules, Transactions Amer. Math. Soc. 339 (1993) 765-779. MR 1124167 (93m:13008)
  • 5. M. Katzman and R. Y. Sharp, Uniform behaviour of the Frobenius closures of ideals generated by regular sequences, J. Algebra, 295 (2006) 231-246. MR 2188859
  • 6. E. Kunz, Characterizations of regular local rings of characteristic $ p$, Amer. J. Math. 91 (1969) 772-784. MR 0252389 (40:5609)
  • 7. G. Lyubeznik, $ F$-modules: applications to local cohomology and $ D$-modules in characteristic $ p > 0$, J. reine angew. Math. 491 (1997) 65-130. MR 1476089 (99c:13005)
  • 8. H. Matsumura, Commutative ring theory, Cambridge Studies in Advanced Mathematics 8, Cambridge University Press, 1986. MR 0879273 (88h:13001)
  • 9. R. Y. Sharp, Tight closure test exponents for certain parameter ideals, Michigan Math. J., to appear (arXiv math.AC/0508214).
  • 10. K. E. Smith, Tight closure of parameter ideals, Inventiones mathematicae 115 (1994) 41-60. MR 1248078 (94k:13006)
  • 11. K. E. Smith, Test ideals in local rings, Transactions Amer. Math. Soc. 347 (1995) 3453-3472. MR 1311917 (96c:13008)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 13A35, 13E10, 16S36, 13D45

Retrieve articles in all journals with MSC (2000): 13A35, 13E10, 16S36, 13D45


Additional Information

Rodney Y. Sharp
Affiliation: Department of Pure Mathematics, University of Sheffield, Hicks Building, Sheffield S3 7RH, United Kingdom
Email: R.Y.Sharp@sheffield.ac.uk

DOI: https://doi.org/10.1090/S0002-9939-06-08606-0
Keywords: Commutative Noetherian ring, prime characteristic, Frobenius homomorphism, Artinian module, Frobenius skew polynomial ring
Received by editor(s): September 28, 2005
Published electronically: August 28, 2006
Additional Notes: The author was partially supported by the Engineering and Physical Sciences Research Council of the United Kingdom (grant number EP/C538803/1).
Communicated by: Bernd Ulrich
Article copyright: © Copyright 2006 American Mathematical Society

American Mathematical Society