ON CHARACTERIZATION AND PERTURBATION
OF LOCAL C-SEMIGROUPS

YUAN-CHUAN LI AND SEN-YEN SHAW

(Communicated by Joseph A. Ball)

Abstract. Let \(S(\cdot) \) be a \((C_0)\)-group with generator \(-B\), and let \(\{T(t); 0 \leq t < \tau\}\) be a local C-semigroup commuting with \(S(\cdot)\). Then the operators \(V(t) := S(-t)T(t); 0 \leq t < \tau \), form a local C-semigroup. It is proved that if \(C \) is injective and \(A \) is the generator of \(T(\cdot) \), then \(A + B \) is closable and \(A + B \) is the generator of \(V(\cdot) \). Also proved are a characterization theorem for local C-semigroups with \(C \) not necessarily injective and a theorem about solvability of the abstract inhomogeneous Cauchy problem: \(u'(t) = Au(t) + Cf(t), 0 < t < \tau; u(0) = Cx. \)

1. Introduction and Result

The aim of this paper is to present some theorems about characterization and perturbation of local C-semigroups and the solvability of the associated inhomogeneous Cauchy problem. Let \(X \) be a complex Banach space and let \(B(X) \) be the Banach algebra of all bounded (linear) operators on \(X \). When \(0 < \tau < \infty \) (resp. \(\tau = \infty \)), a family \(\{T(t); 0 \leq t < \tau\}\) in \(B(X) \) is called a local C-semigroup (resp. (global) C-semigroup) on \(X \) if

(a) \(T(\cdot)x : [0, \tau) \to X \) is continuous for each \(x \in X \).

(b) \(T(s + t)C = T(s)T(t) \) for all \(0 \leq s, t, t + s < \tau \) and \(T(0) = C \).

C-semigroups have been studied in many papers, among them are [1], [2], [3], [7], and [10]. Local C-semigroups have been studied in [1], [6], [8], [9], [11], [12], and [13].

When \(\tau = \infty \) and \(C = I \), the identity operator, \(T(\cdot) \) is a classical \((C_0)\)-semigroup. Thus \((C_0)\)-semigroups form a subclass of the class of C-semigroups, and clearly, every C-semigroup can be viewed as a local C-semigroup defined on \([0, \tau)\) for any \(0 < \tau < \infty \). In general, a local C-semigroup on \([0, \tau)\) for some \(\tau < \infty \) is not necessarily extendible to the whole half line \([0, \infty)\). Results concerning extension of local C-semigroups can be found in [4] and [12].

We first state the following general characterization theorem for local C-semigroups. Its proof will be given in Section 2.

Received by the editors August 8, 2005 and, in revised form, November 7, 2005.

2000 Mathematics Subject Classification. Primary 47D06, 47D60.

Key words and phrases. Local C-semigroup, \((C_0)\)-group, generator, perturbation.

This research was supported in part by the National Science Council of Taiwan.

©2006 American Mathematical Society
Reverts to public domain 28 years from publication

1097
Theorem 1. A strongly continuous family $\{T(t); 0 \leq t < \tau\}$ is a local C-semigroup if and only if $T(\cdot)$ commutes with C and satisfies $T(0) = C$ and

$$
(1.1) \quad (1 \ast T)(s)[T(t) - C] = [T(s) - C](1 \ast T)(t) \quad \text{for all } 0 \leq s, t, s + t < \tau.
$$

We are mainly interested in those local C-semigroups which are nondegenerate. A local C-semigroup $\{T(t); 0 \leq t < \tau\}$ will be said to be nondegenerate if one of the equivalent conditions in the next lemma is satisfied.

Lemma 2. The following statements are equivalent:

1. C is injective.
2. $\lim_{t \to 0^+} T(t)x = 0$ implies $x = 0$.
3. $T(t)x \equiv 0$ on $(0, s_1)$ for some $s_1 \in (0, \tau/2)$ implies $x = 0$.
4. $T(t)x \equiv 0$ on $(0, \tau/2)$ implies $x = 0$.

Proof. (c1) \Rightarrow (c2). If $T(t)x \to 0$ as $t \to 0^+$, by (a) and (b) we have $Cx = \lim_{t \to 0^+} T(t)x = 0$, and (c1) implies $x = 0$.

(c2) implies (c3) and (c4) are obvious.

(c4) \Rightarrow (c1). If $Cx = 0$, then from (b) we see that $T(s)T(t)x = 0$ for all $0 < s, t < \tau/2$, which implies $x = 0$ by (c4). Hence C is injective.

When $\tau = \infty$, the above definition of nondegeneracy coincides with the usual definition of nondegeneracy for C-semigroups, i.e., $T(t)x = 0$ for all $t > 0$ implies $x = 0$. But, when $\tau < \infty$, (c4) is even strictly stronger than the following condition:

(c') $T(t)x \equiv 0$ on $(0, s_2)$ for some $s_2 \in (\tau/2, \tau)$ implies $x = 0$,

because, unlike the case $\tau = \infty$, (c') is not equivalent to the injectivity of C when $\tau < \infty$. Also, unlike C-semigroups, a local C-semigroup $\{T(t); 0 \leq t < \tau\}$ with $\tau < \infty$ need not be commutative, although C commutes with each $T(t), t \in [0, \tau)$, and $\{T(t); 0 \leq t < \tau/2\}$ is a commutative subfamily, by (b). These interesting phenomena are illustrated by the following example.

Let $U: [\tau/2, \tau) \to B(X)$ be a strongly continuous function such that $U(\tau/2) = 0$ and $U(t)$ is injective for all $t \in (\tau/2, \tau)$. The operator $C := 0 \oplus I \in B(X \times X)$, with I the identity operator on X, is not injective. We define $T: [0, \tau) \to B(X \times X)$ by

$$
T(t) := \begin{cases}
0 \oplus I & \text{if } 0 \leq t < \tau/2, \\
U(t) \oplus I & \text{if } \tau/2 \leq t < \tau.
\end{cases}
$$

Then $T(\cdot)$ is strongly continuous and satisfies

$$
T(s)T(t) = T(t)T(s) = 0 \oplus I = T(s + t)C \quad \text{for all } 0 \leq s, t, s + t < \tau.
$$

Hence this $T(\cdot)$ is a local C-semigroup with C not injective. But, it satisfies condition (c'). Indeed, if there is a $t \in (\tau/2, \tau)$ such that $T(t)x = 0$, then since

$$
C(t)x = (U(t) \oplus I)(x_1, x_2) = (U(t)x_1, x_2)
$$

and $U(t)$ is injective, we have $x_1 = x_2 = 0$ and hence $x = 0$. Moreover, since the family $\{U(t); \tau/2 \leq t < \tau\}$ need not be commutative, the above local C-semigroup $T(\cdot)$ may not be a commutative family.

When C is injective, $T(\cdot)$ is indeed commutative (see Lemma 1.1).

Now for a nondegenerate local C-semigroup $T(\cdot)$, by either (c2) or (c4) one can define the generator A by

(d) $x \in D(A)$ and $Ax = y \Leftrightarrow \int_0^t T(s)yds = T(t)x - Cx$ for all $t \in [0, \tau)$.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
It is known [8] that this definition is equivalent to the one in the sense of Da Prato [H]:

\[D(A) = \{ x \in X : \lim_{h \to 0^+} (T(h)x - Cx)/h \in R(C) \}, \]
\[Ax = C^{-1} \lim_{h \to 0^+} (T(h)x - Cx)/h \text{ for } x \in D(A). \]

The following characterization of a nondegenerate local C-semigroup is proved in [8] Lemma 2.1 and Proposition 2.2.

Proposition 3. Let \(C \in B(X) \) be an injection and let \(\{ T(t) ; 0 \leq t < \tau \} \) be a strongly continuous family of operators on \(X \).

(i) If \(T(\cdot) \) is a local C-semigroup with generator \(A \), then \(A \) is closed and satisfies \(C^{-1}AC = A, \ R(\int_0^T T(s)ds) \subset D(A) \) and

\[T(t)x - Cx = \begin{cases} A \int_0^T T(s)xds & \text{for } x \in X, \\ \int_0^T T(s)Axds & \text{for } x \in D(A) \end{cases} \]

for all \(t \in [0, \tau) \).

(ii) If \(A \) is a closed operator satisfying \(R(\int_0^T T(s)ds) \subset D(A) \) and (1.2), then \(T(\cdot) \) is a local C-semigroup with generator \(C^{-1}AC \).

Consequently, a strongly continuous family \(\{ T(t) ; 0 \leq t < \tau \} \) is a local C-semigroup with generator \(A \) if and only if \(A \) is closed and satisfies \(C^{-1}AC = A, \ R(\int_0^T T(s)ds) \subset D(A) \) and (1.2).

The following characterization of generator in terms of solvability of the abstract Cauchy problem is proved in [8] Corollary 2.6.

Proposition 4. An operator \(A \) is the generator of a local C-semigroup \(\{ T(t) ; t \in [0, \tau) \} \) if and only if the abstract Cauchy problem

\[\text{ACP}(A;Cx + C(1 + g), 0) \]
\[\begin{cases} u'(t) = Au(t) + Cx + \int_0^t Cg(s)ds, & 0 < t < \tau, \\ u(0) = 0 \end{cases} \]

has a unique solution for every \(x \in X \) and \(g \in L^1_{loc}([0, \tau), X) \). The solution is

\[u(t) = \int_0^t T(s)xds + \int_0^t \int_0^s T(s-r)g(r)drds. \]

This proposition can be used to deduce assertion (ii) of the next theorem, which is concerned with the solvability of the abstract Cauchy problem

\[\text{ACP}(A; Cf, Cx) \]
\[\begin{cases} u'(t) = Au(t) + Cf(t), & 0 < t < \tau, \\ u(0) = Cx \end{cases} \]

for suitable vector \(x \) and vector function \(f \).

Theorem 5. Let \(A \) be the generator of a nondegenerate local C-semigroup \(\{ T(t) ; 0 \leq t < \tau \} \) on \(X \), \(x \in X \), and \(f \in C([0, \tau), X) \).

(i) If \(\text{ACP}(A; Cf, Cx) \) has a strong solution \(u \), then \(u \equiv T(\cdot)x + Tf \).

(ii) If \(u := T(\cdot)x + Tf \in C([0, \tau), [D(A)]) \), where \([D(A)] \) is the Banach space \(D(A) \) equipped with the graph norm, then \(u \) is a strong solution of \(\text{ACP}(A; Cf, Cx) \).

(iii) If either \(f \in C^1([0, \tau), X) \) or \(f \in C([0, \tau), [D(A)]) \), then for every \(x \in D(A) \) \(\text{ACP}(A; Cf, Cx) \) has the unique strong solution \(u(t) := T(t)x + (Tf)(t), 0 \leq t < \tau. \)
Theorem 5 is well known for the case \(\tau = \infty \) (cf. \[7, Theorem 7.1\) and Corollary 7.5]) and the case \(C = I \) (cf. \[5\]).

As an application of Proposition 4, it is deduced in \[9, Theorem 2\] that if \(A \) is the generator of a local \(C \)-semigroup and if \(B \in \mathcal{B}(X) \) satisfies \(R(B) \subset R(C) \) and \(BCx = CBx \) for \(x \in D(A) \), then \(A + B \) also generates a local \(C \)-semigroup. In the following theorem we extend this result to those unbounded perturbation operators \(B \) that generate some commuting \((C_0)\)-groups.

Theorem 6. Let \(T(\cdot) \) be a local \(C \)-semigroup on a Banach space \(X \) and let \(S(\cdot) \) be a \((C_0)\)-group with generator \(-B\). Suppose \(S(t)T(s) = T(s)S(t) \) for all \(0 \leq s, t < \tau \). Let \(V(t) := S(-t)T(t) \) for \(t \in [0, \tau) \). Then

(i) \(\{V(t); t \in [0, \tau)\} \) is the unique local \(C \)-semigroup commuting with \(S(\cdot) \) and \(T(\cdot) \) and satisfying

\[
(1.3) \quad \int_0^t S(u)(1 \ast V)(u)du = \int_0^t S(u)(1 \ast T)(t-u)du.
\]

(ii) If \(C \) is injective and \(A \) is the generator of \(T(\cdot) \), then \(A + B \) is closable and \(A + B \) is the generator of \(V(\cdot) \). In particular, if \(B \in \mathcal{B}(X) \) commutes with \(T(\cdot) \), then \(A + B \) generates the local \(C \)-semigroup \(\{e^{-tB}T(t); 0 \leq t < \tau\} \).

We remark that a multiplicative perturbation theorem for local \(C \)-semigroups has been proved in \[13\].

The proofs of Theorems 1, 5, and 6 will be given in Sections 2 and 3, and a simple example of an application of Proposition 4 and Theorems 5 and 6 will be given in Section 4.

2. Proofs of Theorems 1 and 5

Proof of Theorem 1. Suppose \(T(\cdot) \) is a local \(C \)-semigroup on \(X \). Then, by the commutativity of \((1 \ast T)(t)\) with \(T(s) \) and \(C \) for \(0 \leq s, t, s + t < \tau \), we have

\[
T(s)(1 \ast T)(t)x = \int_0^t T(s)T(u)xdu = \int_0^t T(s + u)Cxdu = \int_s^{s+t} T(u)Cxdu
\]

\[
= \int_t^{s+t} T(u)Cxdu + \int_0^t T(u)Cxdu - \int_0^s T(u)Cxdu
\]

\[
= (1 \ast T)(s)T(t)x + C(1 \ast T)(t)x - (1 \ast T)(s)Cx
\]

for \(x \in X \) and \(0 \leq s, t, s + t < \tau \). This shows (1.1).

Conversely, suppose that \(T(\cdot) \) satisfies (1.1). For fixed \(s, t \in [0, \tau) \) with \(s + t < \tau \), we replace \(s \) and \(t \) in (1.1) by \(s + t - r \) and \(r \), respectively, to obtain

\[
(1 \ast T)(s + t - r)T(r)x - T(s + t - r)(1 \ast T)(r)x = (1 \ast T)(s + t - r)Cx - C(1 \ast T)(r)x
\]

for all \(x \in X \) and \(r \in [0, s + t) \). By integrating the right-hand side with respect to \(r \) from 0 to \(t \), we obtain from \(CT(\cdot) = T(\cdot)C \) that

\[
\int_0^t (1 \ast T)(s + t - r)Cxdr - \int_0^t C(1 \ast T)(r)xdr
\]

\[
= \int_s^{s+t} (1 \ast T)(r)Cxr dr - \int_0^t C(1 \ast T)(r)xdr
\]

\[
= \int_0^{s+t} (1 \ast T)(r)Cxr dr - \int_0^t C(1 \ast T)(r)xdr
\]

\[
= \int_0^{s+t} (1 \ast T)(r)Cxr dr.
\]
On the other hand, from the left-hand side we have
\[
\int_0^t (1 * T)(s + t - r)T(r)xdr - \int_0^t T(s + t - r)(1 * T)(r)xdr
\]
\[
= (1 * T)(s + t - r)(1 * T)(r)x^t_0 + \int_0^t T(s + t - r)(1 * T)(r)xdr
\]
\[
- \int_0^t T(s + t - r)(1 * T)(r)xdr
\]
\[
= (1 * T)(s)(1 * T)(t)x - (1 * T)(s + t)(1 * T)(0)x
\]
\[
= (1 * T)(s)(1 * T)(t)x.
\]
Therefore, \((1 * T)(\cdot)\) satisfies
\[
(1 * T)(s)(1 * T)(t)x = (\int_0^s \int_0^t - \int_0^s - \int_0^t) (1 * T)(r)xdr
\]
for all \(x \in X\) and \(s, t, s + t \in [0, \tau]\). By differentiation, it is clear that \(T(\cdot)\) is a local \(C\)-semigroup.

Proof of Theorem 5. (i) Suppose \(u\) is a strong solution of \(ACP(A; C_f, C_x)\). Then \(u(0) = Cx\) and \(u' = Au + C_f\), so that \(u - Cx = 1 * u' = 1 * (Au + C_f)\). Therefore we have
\[
T * u - C(1 * T)(\cdot)x = T * (u - Cx) = (1 * T)A * u + 1 * (T * C_f)
\]
\[
= (T - C) * u + C(1 * T) * f
\]
\[
= T * u - C(1 * u) + C1 * (T * f).
\]
Since \(C\) is injective, we have \(1 * u = (1 * T)(\cdot)x + 1 * (T * f)\). By differentiation, we have \(u = T(\cdot)x + T * f\). This also proves that the strong solution of \(ACP(A; C_f, C_x)\) is unique.

(ii) Suppose \(u := T(\cdot)x + T * f \in C([0, \tau), [D(A)])\). Then \(u(0) = Cx\), \(Au \in C([0, \tau), X)\) and \(1 * u = (1 * T)(\cdot)x + (1 * T) * f\), so that, by the closedness of \(A\), we have
\[
1 * (Au) = A(1 * u) = T(\cdot)x - Cx + (T - C) * f = u - Cx - C(1 * f).
\]
By differentiation, we have \(u' = Au + C_f\).

Derivation of (ii) from Proposition 4. By Proposition 4, \(ACP(A; C_x + C(1 * f), 0)\) has a unique solution \(v\) given by \(v(t) = \int_0^t u(s)ds\) for \(t \in [0, \tau)\), where \(u = T(\cdot)x + T * f\). If \(u \in C([0, \tau), [D(A)])\), then by the closedness of \(A\), we have \(v(t) \in D(A)\) and \(Av(t) = \int_0^t Au(s)ds\) is continuously differentiable in \(X\) on \([0, \tau)\). Hence \(u = v' = Au + C_x + C(1 * f)\) is continuously differentiable and satisfies \(u'(t) = Au(t) + C_f(t), 0 < t < \tau\), and \(u(0) = T(0)x = Cx\), i.e., \(u\) is a strong solution of \(ACP(A; C_f, C_x)\).

(iii) Consider the following two cases.
If \(f \in C^1([0, \tau), X)\), then \(T * f \in C^1([0, \tau), X)\) so that
\[
A[1 * (T * f)] = A(1 * T) * f = (T - C) * f
\]
\[
= T * f - C(1 * f) \in C^1([0, \tau), X).
\]
Since \(A\) is closed, it follows from differentiation that \((T * f)(t) \in D(A)\) for all \(t \in [0, \tau)\) and \(A(T * f) = (T * f)' - C_f \in C([0, \tau), X)\), i.e., \(T * f \in C([0, \tau), [D(A)])\).
If \(f \in C([0, \tau], [D(A)]) \), then \(A(T \ast f) = T \ast Af \in C([0, \tau], X) \), and hence we also have \(T \ast f \in C([0, \tau], [D(A)]) \).

Since \(T(\cdot)x \in C([0, \tau], [D(A)]) \) for \(x \in D(A) \), in both the above cases, we have \(u := T(\cdot)x + T \ast f \in C([0, \tau], [D(A)]) \) for every \(x \in D(A) \). Therefore \(u \) is a strong solution of \(ACP(A; Cf, Cx) \) for every \(x \in D(A) \), by (ii).

\[\square \]

3. Proof of Theorem 6

We first prove the following proposition.

Proposition 7. Let \(T(\cdot) \) and \(S(\cdot) \) be two commuting local \(C \)-semigroups with generators \(A \) and \(B \), respectively. Then the following hold.

(i) \(A + B \) is closable and satisfies:
\[
(A + B) \subset C^{-1}(A + B)C \quad \text{and} \quad \overline{A + B} \subset C^{-1}A + BC.
\]

(ii) If, in addition, either one of \(T(\cdot) \) and \(S(\cdot) \) is even a \((C_0)\)-semigroup, then
\[
C^{-1}A + BC = \overline{A + B}.
\]

Proof: (i) First, we show that \(A + B \) is closable. Let \(\{x_n\} \) be a null sequence in \(D(A + B) \) such that \((A + B)x_n \) converges to a vector \(y \in X \). We need to show \(y = 0 \). Observe that \(S(t)T(s) = T(s)S(t) \) implies that \(S(t)Ax = AS(t)x \) for \(x \in D(A) \). Hence we have
\[
(1 \ast T)(t)(1 \ast S)(s)y = \lim_{n \to \infty} (1 \ast T)(t)(1 \ast S)(s)(A + B)x_n
= \lim_{n \to \infty} \left[|T(t) - C|(1 \ast S)(s)x_n + (1 \ast T)(t)|S(s) - C|x_n \right]
= \left[|T(t) - C|(1 \ast S)(s)0 + (1 \ast T)(t)|S(s) - C|0 \right] = 0
\]
and then \(T(s)y = 0 \) for all \(s, t \in (0, \tau) \), by differentiation. Then the strong continuity of \(T(\cdot) \) and \(S(\cdot) \) at 0 implies \(C^2y = 0 \) and hence \(y = 0 \). Therefore \(A + B \) is closable.

Let \(x \in D(A + B) = D(A) \cap D(B) \). Since \(A \) and \(B \) are generators, by Proposition 3(i), we have \(C^{-1}ACx = Ax \) and \(C^{-1}BCx = Bx \), so that \(Cx \in D(A) \cap D(B) = D(A + B) \) and \(ACx = CAx \) and \(BCx = CBx \). Hence \((A + B)Cx = ACx + BCx = C(A + B)x \) and so \(x \in D(C^{-1}(A + B)C) \) and \((A + B)x = C^{-1}(A + B)Cx \). Hence \((A + B) \subset C^{-1}(A + B)C \). Next, we show \(\overline{A + B} \subset C^{-1}A + BC \). If \(x \in D(\overline{A + B}) \), then there is a sequence \(\{x_n\} \) in \(D(A + B) \) such that \((x_n, (A + B)x_n) \to (x, \overline{A + B}x) \). As above, we have \((A + B)Cx_n = C(A + B)x_n \to CA + BCx \). This with the fact that \(Cx_n \to Cx \) implies that \(Cx \in D(\overline{A + B}) \) and \(\overline{A + BC} = CA + BCx \) or \(\overline{A + B} = C^{-1}A + BC \).

(ii) Assume \(S(\cdot) \) is a \((C_0)\)-semigroup. It remains to show the inclusion:
\[
C^{-1}A + BC \subset \overline{A + B}.
\]

Let \(x \in D(C^{-1}\overline{A + BC}) \) and \(y := C^{-1}\overline{A + BC}x \). Then \(Cy = \overline{A + BC}x \). So, there is a sequence \(\{z_n\} \) in \(D(A + B) \) such that \((z_n, (A + B)z_n) \to (Cx, Cy) \) strongly as \(n \to \infty \). Therefore we have for every \(s, t \in [0, \tau) \)
\[
(1 \ast T)(t)(1 \ast S)(s)Cy
= \lim_{n \to \infty} (1 \ast T)(t)(1 \ast S)(s)(A + B)z_n
= \lim_{n \to \infty} \left[(1 \ast S)(t)[T(s) - C]z_n + (1 \ast T)(s)(S(t) - I)z_n \right]
= (1 \ast S)(t)[T(s) - C]Cx + (1 \ast T)(s)(S(t) - I)Cx.
\]
Since $T(\cdot), S(\cdot),$ and C commute, it follows from the injectivity of C that
\[
(1 * T)(s)[(1 * S)(t)y - (S(t) - I)x] = [T(s) - C][(1 * S)(t)x]
\]
for every $s, t \in [0, \tau)$. By the definition of generator, this implies that $(1 * S)(t)x \in D(A)$ and
\[
A(1 * S)(t)x = (1 * S)(t)y - (S(t) - I)x = (1 * S)(t)y - B(1 * S)(t)x.
\]
Hence we have for every $t \in [0, \tau)$
\[
(1 * S)(t)y = (A + B)(1 * S)(t)x = \frac{A + B}{A + B}(1 * S)(t)x.
\]
By differentiation, we have $S(t)x \in D(A + B)$ and $S(t)y = \frac{A + B}{A + B}S(t)x$. Since $S(0) = I$, this implies that $x \in D(A + B)$ and $y \in A + B$. Therefore $C^{-1}(A + BC)$$\subset A + B$.

Proof of Theorem 6. (i) Since $S(\cdot)$ commutes with $T(\cdot)$, clearly $V(\cdot)$ is a local C-semigroup commuting with $S(\cdot)$ and $T(\cdot)$. $V(\cdot)$ satisfies (1.3):
\[
\int_{0}^{t} S(u)(1 * V)(u)du = \int_{0}^{t} S(u) \int_{0}^{u} S(-s)T(s)dsdu = \int_{0}^{t} \int_{0}^{t} S(u - s)T(s)duds
\]
\[
= \int_{0}^{t} \int_{0}^{t - s} S(u)T(s)dsdu = \int_{0}^{t} S(u) \int_{0}^{t - u} T(s)dsdu
\]
\[
= \int_{0}^{t} S(u)(1 * T)(t - u)du.
\]
Suppose $V_{1}(\cdot)$ and $V_{2}(\cdot)$ are two functions satisfying (1.3). Then the function $V(\cdot) := V_{1}(\cdot) - V_{2}(\cdot)$ satisfies $\int_{0}^{t} S(u)(1 * V)(u)du = 0$ for all $t \in [0, \tau)$. Hence $S(t)(1 * V)(t) = 0$ for all $t \in [0, \tau)$. Since $S(t)$ is injective, we must have $V(\cdot) \equiv 0$.

(ii) Since $S(-t)$ is a (C_{0})-semigroup with generator B, an application of Proposition 7 (with $S(\cdot)$ therein replaced by $S(-t)$) yields that $A + B$ is closable and $C^{-1}(A + BC) = \frac{A + B}{A + B}$.

Since $(1 * T)(t)A \subset A(1 * T)(t) = T(t) - C$ for $t \in [0, \tau)$, and since A is closed and $S(t)Ay = AS(t)y$ for $y \in D(A)$ we have $R(\int_{0}^{t} S(u)(1 * T)(t - u)du) \subset D(A)$ and
\[
\int_{0}^{t} S(u)(1 * T)(t - u)du A \subset A \int_{0}^{t} S(u)(1 * T)(t - u)du
\]
\[
= \int_{0}^{t} S(u)A(1 * T)(t - u)du
\]
\[
= \int_{0}^{t} S(u)[T(t) - C]du
\]
\[
= \frac{d}{dt} \int_{0}^{t} S(u)(1 * T)(t - u)du - \int_{0}^{t} S(u)Cdu
\]
\[
= \frac{d}{dt} \int_{0}^{t} S(u)(1 * V)(u)du - \int_{0}^{t} S(u)Cdu
\]
\[
= S(t)(1 * V)(t) - \int_{0}^{t} S(u)Cdu
\]
for all $t \in [0, \tau)$. This and (1.3) imply that

$$
(3.1) \quad \int_0^t S(u)(1 * V)(u)Adu \subset A \int_0^t S(u)(1 * V)(u)du
$$

$$
= S(t)(1 * V)(t) - \int_0^t S(u)Cdu.
$$

Differentiating (1.3), we obtain

$$
(3.2) \quad S(t)(1 * V)(t) = \int_0^t S(u)T(t - u)du \text{ for all } t \in [0, \tau).
$$

Since $1 * V$ commutes with $S(\cdot)$, it commutes with the generator $-B$, i.e., $(1 * V)(u)x \in D(B)$ and $B(1 * V)(u)x = (1 * V)(u)Bx$ for $x \in D(B)$, so that $S'(u)(1 * V)(u)x = -BS(u)(1 * V)(u)x = -S(u)B(1 * V)(u)x = -S(u)(1 * V)(u)Bx$ for all $u \in [0, \tau)$. Then, using integration by parts, the closedness of B, and (1.3), we obtain for $x \in D(B)$ and $t \in [0, \tau)$,

$$
S(t)(1 * V)(t)x = -\int_0^t S(u)(1 * V)(u)Bxdu + \int_0^t S(u)V(u)xdu
$$

$$
= -\int_0^t BS(u)(1 * V)(u)xdu + \int_0^t S(u)V(u)xdu
$$

$$
= -B \int_0^t S(u)(1 * T)(t - u)xdu + \int_0^t S(u)V(u)xdu.
$$

Combining this and (3.2), and by the closedness of B again, we obtain

$$
(3.3) \quad \int_0^t S(u)(1 * T)(t - u)duB \subset B \int_0^t S(u)(1 * T)(t - u)du
$$

$$
= -\int_0^t S(u)T(t - u)du + \int_0^t S(u)V(u)du
$$

for every $t \in [0, \tau)$.

Now we obtain from (1.3), (3.2) and (3.3) that

$$
(3.4) \quad \int_0^t S(u)(1 * V)(u)Bdu \subset B \int_0^t S(u)(1 * V)(u)du
$$

$$
= \int_0^t S(u)V(u)du - S(t)(1 * V)(t).
$$

Hence, summing (3.1) and (3.4) and then taking the closure of $A + B$ we have for every $t \in [0, \tau)$

$$
(3.5) \quad \int_0^t S(u)(1 * V)(u)(A + B)du \subset (A + B) \int_0^t S(u)(1 * V)(u)du
$$

$$
= \int_0^t S(u)[V(u) - C]du.
$$

Since $A + B$ is closed, differentiation with respect to t yields

$$
R(S(t)(1 * V)(t)) \subset D(A + B)
$$

and

$$
(3.6) \quad S(t)(1 * V)(t)A + B \subset \overline{A + BS(t)(1 * V)(t)} = S(t)[V(t) - C]$$
for all \(t \in [0, \tau) \). Since \(S(t) \) is injective, \((1 \ast V)(t)A + B \subset V(t) - C\). On the other hand, since \(S(\cdot) \) commutes with \(V(\cdot) \), we have \(R((1 \ast V)(t))S(t) \subset D(A + B) \) and \(A + B(1 \ast V)(t)S(t) = [V(t) - C]S(t) \). Then, by the surjectivity of \(S(t) \), we obtain that \(R((1 \ast V)(t)) \subset D(A + B) \) and
\[
A + B(1 \ast V)(t) = V(t) - C.
\]
Thus we have shown
\[
(1 \ast V)(t)A + B \subset A + B(1 \ast V)(t) = V(t) - C.
\]
The conclusion of the theorem now follows from Proposition 3.

4. AN ILLUSTRATIVE EXAMPLE

Consider the following initial value problems in \(c_0 \):

\[
\begin{align*}
\begin{cases}
u_n(t) &= (1 + in)u_n(t) + e^{-n}q_n + \int_0^t e^{-n}g_n(s)ds, \ 0 < t < 1, \\
u_n(0) &= 0,
\end{cases}
\end{align*}
\]
\[
\begin{align*}
\begin{cases}
u_n(t) &= (1 + in)u_n(t) + e^{-n}f_n(t), \ 0 < t < 1, \\
u_n(0) &= e^{-n}q_n.
\end{cases}
\end{align*}
\]

The family \(\{T(t)\}; 0 \leq t \leq 1 \), defined by \(T(t)x := (e^{-nt}x_n), \ x = (x_n) \in c_0 \), \(0 \leq t \leq 1 \), is a local \(C \)-semigroup with \(C := \bigoplus_{n=1}^{\infty} e^{-n} \in B(c_0) \) and with generator \(A := \bigoplus_{n=1}^{\infty} n \). The diagonal matrix \(-B := -IA^2 = \bigoplus_{n=1}^{\infty} (-in^2) \) generates the \(C_0 \)-group \(S(\cdot) \), defined by \(S(t)x := (e^{-in^2t}x_n), \ x = (x_n) \in c_0, \ t \geq 0 \), which commutes with \(T(\cdot) \). By Theorem 6, \(A + B \) generates the local \(C \)-semigroup \(\{V(t); 0 \leq t < 1\} \), defined by \(V(t)x := (e^{-nt}e^{(1+in)t}x_n), \ x = (x_n) \in c_0 \).

If, for instance, \(g(t) = (g_n(t)) \in c_0 \) for all \(t \in [0, 1] \) and the functions \(\{g_n\} \) are uniformly continuous on \([0, 1]\), then \(g \in C([0, 1]; c_0) \). Now it follows from Proposition 4 that, for any \(q \in c_0 \), (4.1) has a unique solution \(v \in C([0, 1]; c_0) \), which is given by
\[
v(t) = \int_0^t V(s)qds + \int_0^t \int_0^s V(s-r)g(r)drds
= \left(e^{-n} \left[\frac{1}{n(1 + in)} e^{(1+in)t} - 1 \right] q_n + \int_0^t \int_0^s e^{(1+in)(s-r)} g_n(r)drds \right),
\]
\(0 \leq t < 1 \).

If \((n^2f_n(t)) \in c_0 \) for all \(t \in [0, 1] \) and the functions \(\{n^2f_n\} \) are uniformly continuous on \([0, 1]\), then \(f \in C([0, 1]; [D(A + B)]) \). It follows from Theorem 5 that, for any \(q \in c_0 \) with \(\lim_{n \to \infty} n^2q_n = 0 \), (4.2) has a unique solution \(u \in C([0, 1]; c_0) \), which is given by
\[
u(t) = V(t)q + \int_0^t V(t-s)g(s)ds
= \left(e^{-n} \left[e^{(1+in)t} q_n + \int_0^t e^{(1+in)(t-s)} f_n(s)ds \right] \right), \ 0 \leq t < 1.
\]
References

Department of Applied Mathematics, National Chung-Hsing University, Taichung, 402 Taiwan

E-mail address: ycli@math.nchu.edu.tw

Graduate School of Engineering, Lunghwa University of Science and Technology, Guishan, Taoyuan, 333 Taiwan

E-mail address: shaw@math.ncu.edu.tw