\textbf{\kappa\text{-BI-LIPSCHITZ EQUIVALENCE OF REAL FUNCTION-GERMS}}

L. BIRBRAIR, J. C. F. COSTA, A. FERNANDES, AND M. A. S. RUAS

(Communicated by Mikhail Shubin)

\textbf{Abstract.} In this paper we prove that the set of equivalence classes of germs of real polynomials of degree less than or equal to \(k \), with respect to \(\kappa \)-bi-Lipschitz equivalence, is finite.

1. Introduction

Finiteness theorems of different kinds appear in the modern development of Singularity Theory. When one considers a classification problem, it is important to know if the problem is “tame” or not. In other words, how difficult the problem is and if there is any hope to develop a complete classification. For the problem of topological classification of polynomial function-germs, a finiteness result was conjectured by R. Thom [13] and proved by Fukuda [5]. He proved that the number of equivalence classes of polynomial function-germs of degree less than or equal to any fixed \(k \), with respect to topological equivalence, is finite. Note that R. Thom also discovered that this finiteness result does not hold for polynomial map-germs \(P: \mathbb{R}^3 \rightarrow \mathbb{R}^3 \) [13]. Finiteness theorems for polynomial map-germs, in the real and in the complex case, with respect to topological equivalence were the subject of investigation of various authors (see, for example, [12], [10], [3], [4]) and many interesting results were obtained in this direction. Mostowski [9] and Parusinski [11] proved that the set of equivalence classes of semialgebraic sets with a complexity bounded from below by any fixed \(k \) is finite. A finiteness result does not hold for polynomial function-germs with respect to bi-Lipschitz equivalence. Henry and Parusinski [6] showed that this problem is not tame, i.e., it has “moduli”.

Here we consider the problem of the \(\kappa \)-bi-Lipschitz classification of polynomial function-germs (\(\kappa \)-equivalence is the contact equivalence defined by Mather [7]). We show that this problem is still tame. The main idea of the proof is the following. First, we consider Lipschitz functions “of the same contact”. Namely, \(f \) and \(g \) are of the same contact if \(\frac{f}{g} \) is positive and bounded away from zero and infinity.

We show that two functions of the same contact are \(\kappa \)-bi-Lipschitz equivalent. The next step is related to the geometry of contact equivalence. Recall that two function-germs \(f, g : (\mathbb{R}^n, 0) \rightarrow (\mathbb{R}, 0) \) are \(C^\infty \)-contact equivalent if there exists a
C^∞-diffeomorphism in the product space $(\mathbb{R}^n \times \mathbb{R}, 0)$ which leaves \mathbb{R}^n invariant and maps the graph (f) to the graph (g). This definition is due to Mather [7] for map-germs $f, g: \mathbb{R}^n \to \mathbb{R}^p$. Montaldi extended this notion by introducing a purely geometrical definition of contact: two pairs of submanifolds of \mathbb{R}^n have the same contact type if there is a diffeomorphism of \mathbb{R}^n taking one pair to the other, and relating this with the \mathcal{K}-equivalence of convenient map-germs [8]. This geometrical interpretation also exists for a topological version of \mathcal{K}-equivalence (cf. [11]).

In this paper, we give a definition of Montaldi’s construction for the bi-Lipschitz case and show that the existence of a bi-Lipschitz analogue to Montaldi’s construction and the Mostowski-Parusinski [11] theorem on Lipschitz stratifications.

2. Basic definitions and results

Definition 2.1. Two function-germs $f, g: (\mathbb{R}^n, 0) \to (\mathbb{R}, 0)$ are called \mathcal{K}-bi-Lipschitz equivalent (or contact bi-Lipschitz equivalent) if there exist two germs of bi-Lipschitz homeomorphisms $h: (\mathbb{R}^n, 0) \to (\mathbb{R}^n, 0)$ and $H: (\mathbb{R}^n \times \mathbb{R}, 0) \to (\mathbb{R}^n \times \mathbb{R}, 0)$ such that $H(\mathbb{R}^n \times \{0\}) = \mathbb{R}^n \times \{0\}$ and the following diagram is commutative:

$$
\begin{array}{ccc}
(\mathbb{R}^n, 0) & \overset{\text{id}}{\longrightarrow} & (\mathbb{R}^n \times \mathbb{R}, 0) \\
\downarrow h & & \downarrow H \\
(\mathbb{R}^n, 0) & \overset{\text{id}}{\longrightarrow} & (\mathbb{R}^n \times \mathbb{R}, 0)
\end{array}
\begin{array}{c}
\pi_n \\
\downarrow h \\
\pi_n
\end{array}
\begin{array}{c}
(\mathbb{R}^n, 0) \\
\downarrow h \\
(\mathbb{R}^n, 0)
\end{array}
$$

where $\text{id} : \mathbb{R}^n \to \mathbb{R}^n$ is the identity map and $\pi_n : \mathbb{R}^n \times \mathbb{R} \to \mathbb{R}^n$ is the canonical projection.

The function-germs f and g are called C-bi-Lipschitz equivalent if $h = \text{id}$.

In other words, two function-germs f and g are \mathcal{K}-bi-Lipschitz equivalent if there exists a germ of a bi-Lipschitz map $H: (\mathbb{R}^n \times \mathbb{R}, 0) \to (\mathbb{R}^n \times \mathbb{R}, 0)$ such that $H(x, y)$ can be written in the form $H(x, y) = (h(x), \hat{H}(x, y))$, where h is a bi-Lipschitz map-germ, $\hat{H}(x, 0) = 0$ and H maps the germ of the graph (f) onto the graph (g).

Recall that graph (f) is the set defined as follows:

$$\text{graph}(f) = \{(x, y) \in \mathbb{R}^n \times \mathbb{R} \mid y = f(x)\}.$$

Definition 2.2. Two functions $f, g : \mathbb{R}^n \to \mathbb{R}$ are called of the same contact at a point $x_0 \in \mathbb{R}^n$ if there exist a neighborhood U_{x_0} of x_0 in \mathbb{R}^n and two positive numbers c_1 and c_2 such that, for all $x \in U_{x_0}$, we have

$$c_1 f(x) \leq g(x) \leq c_2 f(x).$$

We use the notation: $f \approx g$.

Remark 2.3. It is clear that if two function-germs f and g are of the same contact, then the germs of their zero-sets are equal.

The main results of the paper are the following.
Theorem 2.4. Let \(f, g : (\mathbb{R}^n, 0) \rightarrow (\mathbb{R}, 0) \) be two germs of Lipschitz functions. Then \(f \) and \(g \) are \(C \)-bi-Lipschitz equivalent if and only if one of the following two conditions is true:

i) \(f \approx g \),

ii) \(f \approx -g \).

Theorem 2.5. Let \(\mathcal{P}_k(\mathbb{R}^n) \) be the set of all polynomials of \(n \) variables with degree less than or equal to \(k \). Then the set of equivalence classes of the germs at \(0 \) of the polynomials in \(\mathcal{P}_k(\mathbb{R}^n) \), with respect to \(K \)-bi-Lipschitz equivalence, is finite.

3. Functions of the same contact

Proof of Theorem 2.4. Suppose that the germs of the Lipschitz functions \(f \) and \(g \) are \(C \)-bi-Lipschitz equivalent. Let \(H : (\mathbb{R}^n \times \mathbb{R}, 0) \longrightarrow (\mathbb{R}^n \times \mathbb{R}, 0) \) be the germ of a bi-Lipschitz homeomorphism satisfying the conditions of Definition 2.1. Let \(V_+ \) be the subset of \(\mathbb{R}^n \times \mathbb{R} \) of points \((x, y)\) where \(y > 0 \), and let \(V_- \) be the subset of \(\mathbb{R}^n \times \mathbb{R} \) where \(y < 0 \). Clearly, we have one of the following possibilities:

1) \(H(V_+) = V_+ \) and \(H(V_-) = V_- \), or
2) \(H(V_+) = V_- \) and \(H(V_-) = V_+ \).

Let us consider the first possibility. In this case, the functions \(f \) and \(g \) have the same sign on each connected component of the set \(f(x) \neq 0 \). Moreover,

\[
|g(x)| = \| (x, 0) - (x, g(x)) \| = \| H(x, 0) - H(x, f(x)) \| \\
\leq c_2 \| (x, 0) - (x, f(x)) \| = c_2 |f(x)|,
\]

where \(c_2 \) is a positive real number. Using the same argument we can show

\[
c_1 |f(x)| \leq |g(x)|, \quad c_1 > 0.
\]

Hence, \(f \approx g \).

Let us consider the second possibility. Let \(\xi : (\mathbb{R}^n \times \mathbb{R}, 0) \rightarrow (\mathbb{R}^n \times \mathbb{R}, 0) \) be a map-germ defined as follows:

\[
\xi(x, y) = (x, -y).
\]

Applying the same arguments to a map \(\xi \circ H \), we will conclude that \(f \approx -g \).

Reciprocally, suppose that \(f \approx g \). Let us construct a map-germ

\[
H : (\mathbb{R}^n \times \mathbb{R}, 0) \rightarrow (\mathbb{R}^n \times \mathbb{R}, 0).
\]

Then the following may occur:

\begin{equation}
H(x, y) = \begin{cases}
(x, 0) & \text{if } y = 0, \\
(x, g(y)/f(x)y) & \text{if } 0 \leq |y| \leq |f(x)|, \\
(x, y - f(x) + g(x)) & \text{if } 0 \leq |f(x)| \leq |y|, \\
(x, y) & \text{otherwise}.
\end{cases}
\end{equation}

The map \(H(x, y) = (x, \tilde{H}(x, y)) \) defined above is bi-Lipschitz. In fact, \(H \) is injective because, for any fixed \(x^* \), we can show that \(\tilde{H}(x^*, y) \) is a continuous and monotone function. Moreover, \(H \) is Lipschitz if \(0 \leq |f(x)| \leq |y| \). Let us show that \(H \) is Lipschitz if \(0 \leq |y| \leq |f(x)| \). By Rademacher’s theorem, in almost every \(x \) near \(0 \in \mathbb{R}^n \), all the partial derivatives \(\frac{\partial f}{\partial x_i}, \frac{\partial g}{\partial x_i} \) exist; hence the derivatives \(\frac{\partial \tilde{H}}{\partial x_i} \).
exist in almost every x near $0 \in \mathbb{R}^n$. By the Mean Value Theorem and continuity of \tilde{H}, it is enough to show that the derivatives $\frac{\partial \tilde{H}}{\partial x_i}$ are bounded on the domain $0 \leq |y| \leq |f(x)|$, for all $i = 1, \ldots, n$. We have

$$\frac{\partial \tilde{H}}{\partial x_i} = \frac{(\frac{\partial g}{\partial x_i} f(x) - \frac{\partial f}{\partial x_i} g(x)) y}{(f(x))^2} = \frac{\partial g}{\partial x_i} f(x) - \frac{\partial f}{\partial x_i} g(x) \frac{y}{f(x)}.$$

Since $|y| \leq |f(x)|$, then $\frac{y}{f(x)}$ is bounded. The expression $\frac{g(x)}{f(x)}$ is bounded since $f \approx g$. Moreover, $\frac{\partial g}{\partial x_i}$ and $\frac{\partial f}{\partial x_i}$ are bounded because f and g are Lipschitz functions.

Since H^{-1} can be constructed in the same form as $\mathbf{1}$, we conclude that H^{-1} is also Lipschitz and, thus, H is a bi-Lipschitz map.

\section{Montaldi's Construction}

\textbf{Definition 4.1.} Two germs of Lipschitz functions are called \mathcal{K}-\mathcal{M}-bi-Lipschitz equivalent (or contact equivalent in the sense of Montaldi) if there exists a germ of a bi-Lipschitz map $M : (\mathbb{R}^n \times \mathbb{R}, 0) \to (\mathbb{R}^n \times \mathbb{R}, 0)$ such that $M(\mathbb{R}^n \times \{0\}) = \mathbb{R}^n \times \{0\}$ and $M(\text{graph}(f)) = \text{graph}(g)$. The map M is called a Montaldi map.

\textbf{Theorem 4.2.} Two germs of Lipschitz functions $f, g : (\mathbb{R}^n, 0) \to (\mathbb{R}, 0)$ are \mathcal{K}-\mathcal{M}-bi-Lipschitz equivalent if and only if they are \mathcal{K}-\mathcal{M}-bi-Lipschitz equivalent.

\textbf{Proof.} It is clear that the \mathcal{K}-bi-Lipschitz equivalence implies the \mathcal{K}-\mathcal{M}-bi-Lipschitz equivalence. To prove the converse, let f and g be \mathcal{K}-\mathcal{M}-bi-Lipschitz equivalent. Then

$$M(\mathbb{R}^n \times \{0\}) = \mathbb{R}^n \times \{0\} \quad \text{and} \quad M(\text{graph}(f)) = \text{graph}(g).$$

Let $h : (\mathbb{R}^n, 0) \to (\mathbb{R}^n, 0)$ be defined by $h(x) = \pi_n(M(x, f(x)))$.

\textbf{Claim 1.} h is a bi-Lipschitz map-germ.

\textbf{Proof of Claim 1.} Since g is a Lipschitz function, the projection $\pi_{n, \text{graph}(g)}$ is a bi-Lipschitz map. By the same argument, the map $x \mapsto (x, f(x))$ is bi-Lipschitz. The map M is bi-Lipschitz by Definition $\mathbf{1.1}$.

\textbf{Claim 2.} One of the following assertions is true:

i) $f \approx g \circ h$,

ii) $f \approx -(g \circ h)$.

\textbf{Proof of Claim 2.} Since M is a bi-Lipschitz map, it follows that there exist two positive numbers c_1 and c_2 such that

$$c_1 |f(x)| \leq ||M(x, f(x)) - M(x, 0)|| \leq c_2 |f(x)|.$$

By the above construction,

$$||M(x, f(x)) - M(x, 0)|| = ||(h(x), g(h(x))) - M(x, 0)|| \geq |g(h(x))|.$$

Therefore, $|g(h(x))| \leq c_2 |f(x)|$.

Using the same procedure for the map M^{-1}, we obtain that
\[c_1 |f(x)| \leq |g(h(x))|. \]

Since M is a homeomorphism and $M(\mathbb{R}^n \times \{0\}) = \mathbb{R}^n \times \{0\}$, the same argument as in Theorem 2.4 implies that, for all $x \in \mathbb{R}^n$,
\[\sign f(x) = \sign g(h(x)), \]
or, for all $x \in \mathbb{R}^n$,
\[\sign f(x) = -\sign g(h(x)). \]

Hence, Claim 2 is proved. \hfill \Box

End of the proof of Theorem 4.2 Using Claim 2 we obtain, by Theorem 2.4, that f and $g \circ h$ are C-bi-Lipschitz equivalent. By Claim 1, f and g are K-bi-Lipschitz equivalent. \hfill \Box

5. Finiteness theorem

This section is devoted to a proof of the finiteness theorem (Theorem 2.5). Actually, this result follows from Theorem 4.2 and the equisingularity statement of the Mostowski-Parusinski theorem, but we are going to present an independent proof, using just the finiteness statement of the same theorem.

Let $\mathcal{P}_k(\mathbb{R}^n)$ be the set of all polynomials of n variables with degree less than or equal to k. Let $\mathcal{S}_k(\mathbb{R}^n)$ be the set of all continuous semialgebraic functions $f: \mathbb{R}^n \to \mathbb{R}$ such that there exists a polynomial $P \in \mathcal{P}_k(\mathbb{R}^n)$; $|f(x)| = |P(x)|$, for all $x \in \mathbb{R}^n$. Clearly, there exists a positive integer number K such that, for all $f \in \mathcal{S}_k(\mathbb{R}^n)$, the algebraic complexity of f (see [2] for a definition) is less than or equal to K. For any function $f \in \mathcal{S}_k(\mathbb{R}^n)$, we associate the germ at $0 \in \mathbb{R}^n$ of the semialgebraic set $X_f \subset \mathbb{R}^n \times \mathbb{R}$, defined by $X_f = \mathbb{R}^n \times \{0\} \cup \{f(x) \neq 0\}$. We say that X_f and X_g are strongly bi-Lipschitz equivalent if there exists a germ of a bi-Lipschitz homeomorphism $h: (\mathbb{R}^n \times \{0\}) \to (\mathbb{R}^n \times \{0\})$ such that $h(X_f) = X_g$. Note that if f and g are K-bi-Lipschitz equivalent, the corresponding sets X_f and X_g are strongly bi-Lipschitz equivalent, but not vice versa. By the Mostowski-Parusinski Theorem ([9], [11]) the set of equivalence classes of the sets X_f for $f \in \mathcal{S}_k(\mathbb{R}^n)$, with respect to strong bi-Lipschitz equivalence, is finite. We are going to show that the set of equivalence classes with respect to K-bi-Lipschitz equivalence is also finite.

Let $f \in \mathcal{S}_k(\mathbb{R}^n)$. Let Y_1, \ldots, Y_p be the set of connected components of the set $f(x) \neq 0$. Let us define a transformation $F_i: \mathbb{R}^n \times \mathbb{R} \to \mathbb{R}^n \times \mathbb{R}$. Let (x, y) be a coordinate system in $\mathbb{R}^n \times \mathbb{R}$ such that $x \in \mathbb{R}^n$ and $y \in \mathbb{R}$. Let

\[H(x, y) = \begin{cases} (x, y) & \text{if } x \notin Y_i, \\ (x, y - f(x)) & \text{if } x \in Y_i. \end{cases} \]

Since $f(x)$ is a Lipschitz function, F_i is a bi-Lipschitz map. The transformation F_i maps the set X_f to the set X_{f_i}, where $f_i \in \mathcal{S}_k(\mathbb{R}^n)$. In fact,

\[f_i(x) = \begin{cases} f(x) & \text{if } x \notin Y_i, \\ -f(x) & \text{if } x \in Y_i. \end{cases} \]

We say that f_i is obtained from f by an elementary transformation. Let $\{f_{\alpha_1}, \ldots, f_{\alpha_p}\}$ be the set of all the functions which can be obtained from f by a sequence of elementary transformations. Clearly, this set is finite.
By the Mostowski-Parusinski Theorem there exists a finite set of functions
\[f^1, \ldots, f^m \in S_k(\mathbb{R}^n) \]
such that, for any \(g \in S_k(\mathbb{R}^n) \), there exists a number \(i \) such that \(X_g \) is strongly bi-Lipschitz equivalent to \(X_{f^i} \). Let us prove that there exists a function \(f^i_{\alpha j} \) obtained from \(f^i \) by a sequence of elementary transformations such that \(g \) is \(\mathcal{K}-\mathcal{M} \)-bi-Lipschitz equivalent to \(f^i_{\alpha j} \), i.e., there exists a Montaldi map between \(X_g \) and \(X_{f^i_{\alpha j}} \).

Suppose that there exists a germ of a bi-Lipschitz map \(h : (\mathbb{R}^n \times \mathbb{R}, 0) \to (\mathbb{R}^n \times \mathbb{R}, 0) \) such that \(h(X_{f^i}) = X_g \). Let \(Y_1, \ldots, Y_p \) be the connected component of \(f^i(x) \neq 0 \). If \(h \) is not a Montaldi map, then there exists a family of the components \(Y_1, \ldots, Y_r, r \leq p \) such that the image of the set \(Y_j \times \{0\} \) belongs to a part of graph \((g) \), and the image of the part of graph \((f^i) \) above \(Y_j \) belongs to \(\mathbb{R}^n \times \{0\} \). Let \(f^i_j \) be the function obtained from \(f^i \) by an elementary transformation \(F^i_j \). Then the map \(h \circ F^i_j \) is a Montaldi map on the set \(Y_j \times \mathbb{R} \) and is equal to \(h \) on the complement of \(Y_j \times \mathbb{R} \). When we apply this construction for all the sets \(Y_1, \ldots, Y_r \) we obtain a Montaldi map \(M : (\mathbb{R}^n \times \mathbb{R}, 0) \to (\mathbb{R}^n \times \mathbb{R}, 0) \) such that \(M(X_{f^i_{\alpha j}}) = X_g \), for some \(f^i_{\alpha j} \). Since \(P_k(\mathbb{R}^n) \subset S_k(\mathbb{R}^n) \), the set of equivalence classes in \(P_k(\mathbb{R}^n) \), with respect to \(\mathcal{K}-\mathcal{M} \)-bi-Lipschitz equivalence, is finite.

By Theorem 4.2 the set of equivalence classes with respect to \(\mathcal{K} \)-equivalence is also finite. The theorem is proved. \[\square \]

The authors are grateful to the referee for valuable suggestions.

References

Departamento de Matemática, Universidade Federal do Ceará, Av. Mister Hull s/u Campus do PICI, Bloco 914, CEP 60455-760 Fortaleza-CE, Brazil

Departamento de Matemática (IBILCE), Universidade Estadual Paulista, São José de Rio Preto, SP 15054-000 Brazil

Departamento de Matemática, Universidade Federal do Ceará, Av. Mister Hull s/u Campus do PICI, Bloco 914, CEP 60455-760 Fortaleza-CE, Brazil

Institute of Sciences and Mathematics, University of São Paulo, São Carlos SP, Brazil