Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Sign changes of Hecke eigenvalues of Siegel cusp forms of genus two


Author: Winfried Kohnen
Journal: Proc. Amer. Math. Soc. 135 (2007), 997-999
MSC (2000): Primary 11F46
DOI: https://doi.org/10.1090/S0002-9939-06-08570-4
Published electronically: October 13, 2006
MathSciNet review: 2262899
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We shall show that the eigenvalues of a Hecke eigenform of integral weight and genus 2 not contained in the Maass space change signs infinitely often.


References [Enhancements On Off] (What's this?)

  • 1. A. N. Andrianov: Euler products corresponding to Siegel modular forms of genus 2, Russ. Math. Surv. 29, 45-116 (1974) MR 0432552 (55:5540)
  • 2. S. Böcherer and S. Raghavan: On Fourier coefficients of Siegel modular forms, J. Reine Angew. Math. 384, 80-101 (1988). MR 0929979 (89c:11068)
  • 3. S. Breulmann: On Hecke eigenforms in the Maass space, Math. Z. 232, no. 3, 527-530 (1999). MR 1719682 (2000j:11066)
  • 4. M. Eichler and D. Zagier: The theory of Jacobi forms, Progress in Math, vol. 55, Birkhäuser: Boston, 1985. MR 0781735 (86j:11043)
  • 5. S. A. Evdokimov: A characterization of the Maass space of Siegel cusp forms of genus 2 (in Russian), Mat. Sbornik (154) 112, 133-142 (1980). MR 0575936 (82a:10028)
  • 6. M. Knopp, W. Kohnen and W. Pribitkin: On the signs of Fourier coefficients of cusp forms, The Ramanujan J. 7, 269-277 (2003). MR 2035806 (2004m:11064)
  • 7. E. Landau, Über einen Satz von Tschebyschef, Math. Ann. 61, 527-550 (1906).
  • 8. H. Maass, Siegel's modular forms and Dirichlet series, Lect. Not. in Math. 216, Springer: Berlin, 1971. MR 0344198 (49:8938)
  • 9. T. Oda: On modular forms associated with indefinite quadratic forms of signature $ (2,n-2)$, Math. Ann. 231, 97-144 (1977). MR 0466026 (57:5909)
  • 10. R. Weissauer: The Ramanujan conjecture for genus 2 Siegel modular forms (an application of the trace formula). Preprint, Mannheim (1993).

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 11F46

Retrieve articles in all journals with MSC (2000): 11F46


Additional Information

Winfried Kohnen
Affiliation: Mathematisches Institut, Universität Heidelberg, INF 288, D-69120 Heidelberg, Germany
Email: winfried@mathi.uni-heidelberg.de

DOI: https://doi.org/10.1090/S0002-9939-06-08570-4
Received by editor(s): July 26, 2005
Received by editor(s) in revised form: November 15, 2005
Published electronically: October 13, 2006
Communicated by: Ken Ono
Article copyright: © Copyright 2006 American Mathematical Society

American Mathematical Society