The global attractivity of the rational difference equation
Authors:
Kenneth S. Berenhaut, John D. Foley and Stevo Stevic
Journal:
Proc. Amer. Math. Soc. 135 (2007), 11331140
MSC (2000):
Primary 39A10, 39A11
Published electronically:
October 4, 2006
MathSciNet review:
2262916
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: This paper studies the behavior of positive solutions of the recursive equation with and , where . We prove that if , with odd, then tends to , exponentially. When combined with a recent result of E. A. Grove and G. Ladas (Periodicities in Nonlinear Difference Equations, Chapman & Hall/CRC Press, Boca Raton (2004)), this answers the question when is a global attractor.
 1.
R.
M. AbuSaris and R.
DeVault, Global stability of
𝑦_{𝑛+1}=𝐴+\frac{𝑦_{𝑛}}𝑦_{𝑛𝑘},
Appl. Math. Lett. 16 (2003), no. 2, 173–178. MR 1962312
(2004c:39037), http://dx.doi.org/10.1016/S08939659(03)800289
 2.
A.
M. Amleh, E.
A. Grove, G.
Ladas, and D.
A. Georgiou, On the recursive sequence
𝑥_{𝑛+1}=𝛼+𝑥_{𝑛1}/𝑥_{𝑛},
J. Math. Anal. Appl. 233 (1999), no. 2,
790–798. MR 1689579
(2000f:39002), http://dx.doi.org/10.1006/jmaa.1999.6346
 3.
K. S. BERENHAUT, J. D. FOLEY AND S. STEVIC, Quantitative bounds for the recursive sequence , Appl. Math. Lett., in press, (2005).
 4.
E.
Camouzis, G.
Ladas, and H.
D. Voulov, On the dynamics of
𝑥_{𝑛+1}=𝛼+𝛾𝑥_{𝑛1}+𝛿𝑥_{𝑛2}\over𝐴+𝑥_{𝑛2},
J. Difference Equ. Appl. 9 (2003), no. 8,
731–738. Special Session of the American Mathematical Society
Meeting, Part II (San Diego, CA, 2002). MR 1992906
(2004e:39005), http://dx.doi.org/10.1080/1023619021000042153
 5.
H.
ElMetwally, E.
A. Grove, G.
Ladas, and H.
D. Voulov, On the global attractivity and the periodic character of
some difference equations, J. Differ. Equations Appl.
7 (2001), no. 6, 837–850. On the occasion of
the 60th birthday of Calvin Ahlbrandt. MR 1870725
(2003e:39006), http://dx.doi.org/10.1080/10236190108808306
 6.
C.
H. Gibbons, M.
R. S. Kulenović, G.
Ladas, and H.
D. Voulov, On the trichotomy character of
𝑥_{𝑛+1}=(𝛼+𝛽𝑥_{𝑛}+𝛾𝑥_{𝑛1})/(𝐴+𝑥_{𝑛}),
J. Difference Equ. Appl. 8 (2002), no. 1,
75–92. MR
1884593 (2003e:39032), http://dx.doi.org/10.1080/10236190211940
 7.
E.
A. Grove and G.
Ladas, Periodicities in nonlinear difference equations,
Advances in Discrete Mathematics and Applications, vol. 4, Chapman
& Hall/CRC, Boca Raton, FL, 2005. MR 2193366
(2006j:39002)
 8.
V.
L. Kocić and G.
Ladas, Global behavior of nonlinear difference equations of higher
order with applications, Mathematics and its Applications,
vol. 256, Kluwer Academic Publishers Group, Dordrecht, 1993. MR 1247956
(94k:39005)
 9.
W.
T. Patula and H.
D. Voulov, On the oscillation and periodic
character of a third order rational difference equation, Proc. Amer. Math. Soc. 131 (2003), no. 3, 905–909 (electronic). MR 1937429
(2003j:39008), http://dx.doi.org/10.1090/S000299390206611X
 10.
Stevo
Stević, Behavior of the positive solutions of the
generalized BeddingtonHolt equation, Panamer. Math. J.
10 (2000), no. 4, 77–85. MR 1801533
(2001k:39029)
 11.
Stevo
Stević, A note on periodic character of a difference
equation, J. Difference Equ. Appl. 10 (2004),
no. 10, 929–932. MR 2079642
(2005b:39011), http://dx.doi.org/10.1080/10236190412331272616
 1.
 R. M. ABUSARIS AND R. DEVAULT, Global stability of , Appl. Math. Lett. 16 (2003), no. 2, 173178. MR 1962312 (2004c:39037)
 2.
 A. M. AMLEH, E. A. GROVE, G. LADAS AND D. A. GEORGIOU, On the recursive sequence . J. Math. Anal. Appl. 233 (1999), no. 2, 790798. MR 1689579 (2000f:39002)
 3.
 K. S. BERENHAUT, J. D. FOLEY AND S. STEVIC, Quantitative bounds for the recursive sequence , Appl. Math. Lett., in press, (2005).
 4.
 E. CAMOUZIS, G. LADAS, AND H. D. VOULOV, On the dynamics of . Special Session of the American Mathematical Society Meeting, Part II (San Diego, CA, 2002). J. Differ. Equations Appl. 9 (2003), no. 8, 731738. MR 1992906 (2004e:39005)
 5.
 H. ELMETWALLY, E. A. GROVE, G. LADAS, AND H. D. VOULOV, On the global attractivity and the periodic character of some difference equations, J. Diff. Eqn. Appl. 7 (2001), 837850. MR 1870725 (2003e:39006)
 6.
 C. H. GIBBONS, M. R. S. KULENOVIC, G. LADAS, AND H. D. VOULOV, On the trichotomy character of . J. Differ. Equations Appl. 8 (2002), no. 1, 7592. MR 1884593 (2003e:39032)
 7.
 E. A. GROVE AND G. LADAS, Periodicities in Nonlinear Difference Equations, Chapman & Hall/CRC Press, Boca Raton (2004). MR 2193366
 8.
 V. KOCIC AND G. LADAS. Global behavior of nonlinear difference equations of higher order with applications, Mathematics and its Applications, 256. Kluwer Academic Publishers Group, Dordrecht, 1993. MR 1247956 (94k:39005)
 9.
 W. T. PATULA AND H. D. VOULOV. On the oscillation and periodic character of a third order rational difference equation. Proc. Amer. Math. Soc. 131 (2003), no. 3, 905909. MR 1937429 (2003j:39008)
 10.
 S. STEVIC. Behavior of the positive solutions of the generalized BeddingtonHolt equation. Panamer. Math. J. 10 (2000), no. 4, 7785. MR 1801533 (2001k:39029)
 11.
 S. STEVIC, A note on periodic character of a difference equation. J. Difference Equ. Appl. 10 (2004), no. 10, 929932. MR 2079642 (2005b:39011)
Similar Articles
Retrieve articles in Proceedings of the American Mathematical Society
with MSC (2000):
39A10,
39A11
Retrieve articles in all journals
with MSC (2000):
39A10,
39A11
Additional Information
Kenneth S. Berenhaut
Affiliation:
Department of Mathematics, Wake Forest University, WinstonSalem, North Carolina 27109
Email:
berenhks@wfu.edu
John D. Foley
Affiliation:
Department of Mathematics, Wake Forest University, WinstonSalem, North Carolina 27109
Email:
folejd4@wfu.edu
Stevo Stevic
Affiliation:
Mathematical Institute of Serbian Academy of Science, Knez Mihailova 35/I 11000 Beograd, Serbia
Email:
sstevic@ptt.yu, sstevo@matf.bg.ac.yu
DOI:
http://dx.doi.org/10.1090/S0002993906085807
PII:
S 00029939(06)085807
Keywords:
Difference equation,
stability,
exponential convergence,
periodic solution.
Received by editor(s):
September 7, 2005
Received by editor(s) in revised form:
November 11, 2005
Published electronically:
October 4, 2006
Additional Notes:
The first author acknowledges financial support from a Sterge Faculty Fellowship.
Communicated by:
Carmen C. Chicone
Article copyright:
© Copyright 2006 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.
