Hypercyclicity in omega

Author:
Henrik Petersson

Journal:
Proc. Amer. Math. Soc. **135** (2007), 1145-1149

MSC (2000):
Primary 47A16

DOI:
https://doi.org/10.1090/S0002-9939-06-08584-4

Published electronically:
October 4, 2006

MathSciNet review:
2262918

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: A sequence of operators is said to be hypercyclic if there exists a vector , called hypercyclic for , such that is dense. A hypercyclic subspace for is a closed infinite-dimensional subspace of, except for zero, hypercyclic vectors. We prove that if is a sequence of operators on that has a hypercyclic subspace, then there exist (i) a sequence of one variable polynomials such that is hypercyclic for every fixed and (ii) an operator that maps nonzero vectors onto hypercyclic vectors for .

We complement earlier work of several authors.

**1.**S. Ansari,*Existence of hypercyclic operators on topological vector spaces*, J. Funct. Anal.**148**(1997), 384-390. MR**1469346 (98h:47028a)****2.**L. Bernal-González,*On hypercyclic operators in Banach spaces*, Proc. Amer. Math. Soc.**127**(1999), 1003-1010. MR**1476119 (99f:47010)****3.**L. Bernal-González,*Hypercyclic subspaces in Fréchet spaces*, Proc. Amer. Math. Soc., to appear.**4.**L. Bernal-González and A. Montes-Rodríguez,*Non-finite dimensional closed vector spaces of universal functions for composition operators*, J. Approx. Theory**82**(1995), 375-391. MR**1348728 (96f:30034)****5.**J. Bès and A. Conejero,*Hypercyclic subspaces in omega*, J. Math. Anal. Appl., to appear.**6.**J. Bonet, F. Martinez and A. Peris,*Universal and chaotic multipliers on spaces of operators*, J. Math. Anal. Appl.**297**(2004), 599-611. MR**2088683 (2005g:47006)****7.**J. Bonet and A. Peris,*Hypercyclic operators on non-normable Fréchet spaces*, J. Funct. Anal.**159**(1998), 587-595. MR**1658096 (99k:47044)****8.**K. C. Chan,*Hypercyclicity of the operator algebra for a separable Hilbert space*, J. Operator Theory**42**(1999), 231-244. MR**1716973 (2000i:47066)****9.**K. C. Chan and R. D. Taylor,*Hypercyclic subspaces of a Banach space*, Integr. equ. oper. theory**41**(2001), 381-388. MR**1857797 (2002g:47011)****10.**M. González, F. Leon-Saavedra and A. Montes-Rodríguez,*Semi-Fredholm Theory: Hypercyclic and Supercyclic Subspaces*, Proc. London Math. Soc.**81**(3) (2000), 169-189. MR**1757050 (2001g:47013)****11.**G. Herzog and R. Lemmert,*Über Endomorphismen mit den dichten Bahnen*, Math. Z**213**(1993), 473-477. MR**1227494 (94h:47052)****12.**F. Leon-Saavedra and A. Montes-Rodríguez,*Linear Structure of Hypercyclic Vectors*, J. Funct. Anal.**148**(1997), 524-545. MR**1469352 (98h:47028b)****13.**A. Montes-Rodríguez,*Banach spaces of hypercyclic vectors*, Michigan Math. J.**43**(1996), 419-436. MR**1420585 (98g:47027)****14.**H. Petersson,*Hypercyclic subspaces for Fréchet space operators*, J. Math. Anal. Appl.**319**(2006), 764-782.**15.**H. Petersson,*Complemented hypercyclic subspaces*, to appear in Houston J. Math.

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (2000):
47A16

Retrieve articles in all journals with MSC (2000): 47A16

Additional Information

**Henrik Petersson**

Affiliation:
School of Mathematical Sciences, Chalmers/Göteborg University, SE-412 96 Göteborg, Sweden

Email:
henripet@math.chalmers.se

DOI:
https://doi.org/10.1090/S0002-9939-06-08584-4

Keywords:
Hypercyclic subspace,
omega,
backward shift.

Received by editor(s):
November 11, 2005

Published electronically:
October 4, 2006

Additional Notes:
This work was supported by the The Royal Swedish Academy of Sciences.

Communicated by:
Joseph A. Ball

Article copyright:
© Copyright 2006
American Mathematical Society