Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Compactness properties of operators dominated by AM-compact operators


Authors: Belmesnaoui Aqzzouz, Redouane Nouira and Larbi Zraoula
Journal: Proc. Amer. Math. Soc. 135 (2007), 1151-1157
MSC (2000): Primary 46A40, 46B40, 46B42
DOI: https://doi.org/10.1090/S0002-9939-06-08585-6
Published electronically: October 13, 2006
Erratum: Proc. Amer. Math. Soc. 137 (2009), 2813-2815
MathSciNet review: 2262919
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We study several properties about the problem of domination in the class of positive AM-compact operators, and we obtain some interesting consequences on positive compact operators. Also, we give a sufficient condition under which a Banach lattice is discrete.


References [Enhancements On Off] (What's this?)

  • 1. Aliprantis, C.D. and Burkinshaw, O., Positive compact operators on Banach lattices. Math. Z. 174 (1980), 289-298. MR 0593826 (81m:47053)
  • 2. Aliprantis, C.D. and Burkinshaw, O., On weakly compact operators on Banach lattices. Proc. Amer. Math. Soc. 83 (1981), no. 3, 573-578. MR 0627695 (82j:47057)
  • 3. Aliprantis, C.D. and Burkinshaw, O., Dunford-Pettis operators on Banach lattices. Trans. Amer. Math. Soc. 274 (1982), no. 1, 227-238. MR 0670929 (84b:47045)
  • 4. Aliprantis, C.D. and Burkinshaw, O., Positive operators. Pure and Applied Mathematics, 119. Academic Press, Inc., Orlando, FL, 1985. MR 0809372 (87h:47086)
  • 5. Aliprantis, C.D. and Burkinshaw, O., Locally solid Riesz spaces with applications to economics. Mathematical Surveys and Monographs, Vol. 105, American Mathematical Society, Providence, RI, 2003. MR 2011364 (2005b:46010)
  • 6. Aqzzouz, B. and Nouira, R., Les opérateurs précompacts sur les treillis vectoriels localement convexes-solides. Sci. Math. Jpn., 57 (2003), no. 2, 279-256. MR 1959985 (2003k:46001)
  • 7. Aqzzouz, B. and Nouira, R., Sur les opérateurs pré compacts positifs. C. R. Math. Acad. Sc. Paris, 337, (2003), no. 8, 527-530. MR 2017131 (2004h:46002)
  • 8. Dodds, P.G. and Fremlin, D.H., Compact operators on Banach lattices. Israel J. Math. 34 (1979), 287-320. MR 0570888 (81g:47037)
  • 9. Flores, J. and Hernández, F. L. Domination by positive disjointly strictly singular operators. Proc. Amer. Math. Soc. 129 (2001), no. 7, 1979-1986. MR 1825905 (2002b:47075)
  • 10. Flores, J. and Hernandez, F.L., Domination by positive strictly singular operators. J. London Math. Soc. no. 2, 66 (2002), 433-452. MR 1920413 (2003k:47047)
  • 11. Flores, J. and Ruiz, C., Domination by positive narrow operators. Positivity 7 (2003), no. 4, 303-321. MR 2017310 (2004k:47071)
  • 12. Fremlin, D.H., Riesz spaces with the order continuity property I. Proc. Cambr. Phil. Soc. 81 (1977), 31-42. MR 0425572 (54:13526)
  • 13. Kalton, N.J. and Saab, P., Ideal properties of regular operators between Banach lattices. Illinois Journal of Math. 29 (1985), no. 3, 382-400. MR 0786728 (87a:47064)
  • 14. Robertson, A.P. and Robertson, W., Topological vector spaces. 2 $ ^{\text{nd}}$ ed, Cambridge University Press, London, 1973. MR 0350361 (50:2854)
  • 15. Wickstead, A.W., Extremal structure of cones of operators. Quart. J. Math. Oxford 32 (1981), no. 2, 239-253. MR 0615198 (82i:47069)
  • 16. Wickstead, A.W., Converses for the Dodds-Fremlin and Kalton-Saab Theorems. Math. Proc. Camb. Phil. Soc. 120 (1996), 175-179. MR 1373356 (96m:47067)
  • 17. Wickstead, A.W., Positive compact operators on Banach lattices: some loose ends. Positivity 4 (2000), 313-325. MR 1797133 (2001k:47054)
  • 18. Zaanen, A.C., Riesz spaces II. North-Holland Publishing Company, 1983. MR 0704021 (86b:46001)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 46A40, 46B40, 46B42

Retrieve articles in all journals with MSC (2000): 46A40, 46B40, 46B42


Additional Information

Belmesnaoui Aqzzouz
Affiliation: Département de Mathématiques, Faculté des Sciences, Université Ibn Tofail, Equipe d’Analyse Fonctionnelle, B.P. 133, Kénitra, Morocco
Email: baqzzouz@hotmail.com

Redouane Nouira
Affiliation: Département de Mathématiques, Faculté des Sciences, Université Ibn Tofail, Equipe d’Analyse Fonctionnelle, B.P. 133, Kénitra, Morocco

Larbi Zraoula
Affiliation: Département de Mathématiques, Faculté des Sciences, Université Ibn Tofail, Equipe d’Analyse Fonctionnelle, B.P. 133, Kénitra, Morocco

DOI: https://doi.org/10.1090/S0002-9939-06-08585-6
Keywords: AM-compact operator, order continuous norm, discrete vector lattice.
Received by editor(s): July 7, 2005
Received by editor(s) in revised form: November 14, 2005
Published electronically: October 13, 2006
Communicated by: Joseph A. Ball
Article copyright: © Copyright 2006 American Mathematical Society

American Mathematical Society