Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Principle of local reflexivity revisited


Authors: Eve Oja and Märt Põldvere
Journal: Proc. Amer. Math. Soc. 135 (2007), 1081-1088
MSC (2000): Primary 46B07, 46B20, 46B28
DOI: https://doi.org/10.1090/S0002-9939-06-08612-6
Published electronically: October 2, 2006
MathSciNet review: 2262909
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We give, departing from Grothendieck's description of the dual of the space of weak$ ^\ast$-weak continuous finite-rank operators, a clear proof for the principle of local reflexivity in a general form.


References [Enhancements On Off] (What's this?)

  • [Beh] E. BEHRENDS,
    A generalization of the principle of local reflexivity,
    Rev. Roumaine Math. Pures Appl. 31 (1986), 293-296. MR 0854826 (88a:46011)
  • [Ber] S.J. BERNAU,
    A unified approach to the principle of local reflexivity,
    In: H.E. Lacey (ed.), Notes in Banach spaces, 427-439, Univ. Texas Press, Austin, Tex., 1980. MR 0606228 (82e:46019)
  • [C] P.G. CASAZZA,
    Approximation properties,
    In: W.B. Johnson and J. Lindenstrauss (eds.), Handbook of the Geometry of Banach Spaces. Volume 1, 271-316, Elsevier, 2001. MR 1863695 (2003f:46012)
  • [Ca] J.M.F. CASTILLO,
    review of Martínez-Abejón, Antonio. An elementary proof of the principle of local reflexivity. Proc. Amer. Math. Soc. 127 (1999), no. 5, 1397-1398. MR 1476378 (99h:46008)
  • [D] D.W. DEAN,
    The equation $ L(E,X^{\ast\ast})=L(E,X)^{\ast\ast}$ and the principle of local reflexivity,
    Proc. Amer. Math. Soc. 40 (1973), 146-148. MR 0324383 (48:2735)
  • [DU] J. DIESTEL AND J.J. UHL,
    Vector Measures,
    Mathematical Surveys 15. American Mathematical Society, Providence, Rhode Island, 1977. MR 0453964 (56:12216)
  • [DSch] N. DUNFORD AND J.T. SCHWARTZ,
    Linear Operators. Part 1: General Theory,
    Wiley, New York, 1958. MR 1009162 (90g:47001a)
  • [F] H. FAKHOURY,
    Sélections linéaires associées au théorème de Hahn-Banach,
    J. Funct. Anal. 11 (1972), 436-452. MR 0348457 (50:955)
  • [GKS] G. GODEFROY, N. J. KALTON, AND P. D. SAPHAR,
    Unconditional ideals in Banach spaces,
    Studia Math. 104 (1993), 13-59. MR 1208038 (94k:46024)
  • [G] A. GROTHENDIECK,
    Produits tensoriels topologiques et espaces nucléaires,
    Mem. Amer. Math. Soc. 16 (1955). MR 0075539 (17:763c)
  • [HWW] P. HARMAND, D. WERNER, AND W. WERNER,
    $ M$-ideals in Banach Spaces and Banach Algebras,
    Lecture Notes in Math., vol. 1547, Springer, Berlin-Heidelberg-New York, 1993. MR 1238713 (94k:46022)
  • [JL] W.B. JOHNSON AND J. LINDENSTRAUSS,
    Basic concepts in the geometry of Banach spaces,
    In: W.B. Johnson and J. Lindenstrauss (eds.), Handbook of the Geometry of Banach Spaces. Volume 1, 1-84, Elsevier, 2001. MR 1863689 (2003f:46013)
  • [JRZ] W.B. JOHNSON, H.P. ROSENTHAL, AND M. ZIPPIN,
    On bases, finite dimensional decompositions and weaker structures in Banach spaces,
    Israel J. Math. 9 (1971), 488-506. MR 0280983 (43:6702)
  • [K] N.J. KALTON,
    Locally complemented subspaces and $ \mathcal L_p$-spaces for $ 0<p<1$,
    Math. Nachr. 115 (1984), 71-97. MR 0755269 (86h:46006)
  • [L] J. LINDENSTRAUSS,
    Extension of compact operators,
    Mem. Amer. Math. Soc. 48 (1964). MR 0179580 (31:3828)
  • [LR] J. LINDENSTRAUSS AND H.P. ROSENTHAL,
    The $ \mathcal L_p$ spaces,
    Israel J. Math. 7 (1969), 325-349. MR 0270119 (42:5012)
  • [M-A] A. MART´INEZ-ABEJ´ON,
    An elementary proof of the principle of local reflexivity,
    Proc. Amer. Math. Soc. 127 (1999), 1397-1398. MR 1476378 (99h:46008)
  • [O$ _1$] E. OJA,
    Geometry of Banach spaces having shrinking approximations of the identity,
    Trans. Amer. Math. Soc. 352 (2000), 2801-2823. MR 1675226 (2000j:46034)
  • [O$ _2$] E. OJA,
    Operators that are nuclear whenever they are nuclear for a larger range space,
    Proc. Edinburgh Math. Soc. 47 (2004), 679-694. MR 2097268 (2005g:46040)
  • [R] R.A. RYAN,
    Introduction to Tensor Products of Banach Spaces,
    Springer, London-Berlin-Heidelberg, 2002. MR 1888309 (2003f:46030)
  • [S] CH. STEGALL,
    A proof of the principle of local reflexivity,
    Proc. Amer. Math. Soc. 78 (1980), 154-156. MR 0548105 (81e:46012)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 46B07, 46B20, 46B28

Retrieve articles in all journals with MSC (2000): 46B07, 46B20, 46B28


Additional Information

Eve Oja
Affiliation: Institute of Pure Mathematics, Tartu University, J. Liivi 2, 50409 Tartu, Estonia
Email: eve.oja@ut.ee

Märt Põldvere
Affiliation: Institute of Pure Mathematics, Tartu University, J. Liivi 2, 50409 Tartu, Estonia
Email: mart.poldvere@ut.ee

DOI: https://doi.org/10.1090/S0002-9939-06-08612-6
Keywords: Principle of local reflexivity, extension operator, locally complemented subspaces
Received by editor(s): April 6, 2005
Received by editor(s) in revised form: November 2, 2005
Published electronically: October 2, 2006
Additional Notes: This research was partially supported by Estonian Science Foundation Grant 5704
Communicated by: N. Tomczak-Jaegermann
Article copyright: © Copyright 2006 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society