Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



Hyperbolic convexity and the analytic fixed point function

Author: Alexander Yu. Solynin
Journal: Proc. Amer. Math. Soc. 135 (2007), 1181-1186
MSC (2000): Primary 30C55, 30F45
Published electronically: October 18, 2006
MathSciNet review: 2262924
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We answer a question raised by D. Mejía and Ch. Pommerenke by showing that the analytic fixed point function is hyperbolically convex in the unit disc.

References [Enhancements On Off] (What's this?)

  • 1. Barbara Brown Flinn, Hyperbolic convexity and level sets of analytic functions, Indiana Univ. Math. J. 32 (1983), no. 6, 831–841. MR 721566, 10.1512/iumj.1983.32.32056
  • 2. Seán Dineen, The Schwarz lemma, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1989. Oxford Science Publications. MR 1033739
  • 3. V. N. Dubinin, Symmetrization in the geometric theory of functions of a complex variable, Uspekhi Mat. Nauk 49 (1994), no. 1(295), 3–76 (Russian); English transl., Russian Math. Surveys 49 (1994), no. 1, 1–79. MR 1307130, 10.1070/RM1994v049n01ABEH002002
  • 4. Frederick P. Gardiner and Nikola Lakic, Quasiconformal Teichmüller theory, Mathematical Surveys and Monographs, vol. 76, American Mathematical Society, Providence, RI, 2000. MR 1730906
  • 5. W. K. Hayman, Subharmonic functions. Vol. 2, London Mathematical Society Monographs, vol. 20, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], London, 1989. MR 1049148
  • 6. Vilhelm Jørgensen, On an inequality for the hyperbolic measure and its applications in the theory of functions, Math. Scand. 4 (1956), 113–124. MR 0084584
  • 7. Diego Mejía and Christian Pommerenke, The analytic fixed point function in the disk, Comput. Methods Funct. Theory 5 (2005), no. 2, 275–299. MR 2205415, 10.1007/BF03321099
  • 8. D. Mejía, Ch. Pommerenke, The analytic point function II. Preprint.
  • 9. A. Yu. Solynin, Continuous symmetrization of sets, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 185 (1990), no. Anal. Teor. Chisel i Teor. Funktsii. 10, 125–139, 186 (Russian); English transl., J. Soviet Math. 59 (1992), no. 6, 1214–1221. MR 1097593, 10.1007/BF01374083
  • 10. A. Yu. Solynin, Polarization and functional inequalities, Algebra i Analiz 8 (1996), no. 6, 148–185 (Russian, with Russian summary); English transl., St. Petersburg Math. J. 8 (1997), no. 6, 1015–1038. MR 1458141
  • 11. A. Yu. Solynin and M. Vuorinen, Estimates for the hyperbolic metric of the punctured plane and applications, Israel J. Math. 124 (2001), 29–60. MR 1856503, 10.1007/BF02772606
  • 12. René P. Sperb, Maximum principles and their applications, Mathematics in Science and Engineering, vol. 157, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, 1981. MR 615561

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 30C55, 30F45

Retrieve articles in all journals with MSC (2000): 30C55, 30F45

Additional Information

Alexander Yu. Solynin
Affiliation: Department of Mathematics and Statistics, Texas Tech University, Box 41042, Lubbock, Texas 79409

Keywords: Analytic fixed point function, hyperbolic convexity, Riemann surface, hyperbolic metric
Received by editor(s): November 17, 2005
Published electronically: October 18, 2006
Additional Notes: This research was supported in part by NSF grant DMS-0412908
Communicated by: Juha M. Heinonen
Article copyright: © Copyright 2006 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.