Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Hyperbolic convexity and the analytic fixed point function


Author: Alexander Yu. Solynin
Journal: Proc. Amer. Math. Soc. 135 (2007), 1181-1186
MSC (2000): Primary 30C55, 30F45
DOI: https://doi.org/10.1090/S0002-9939-06-08661-8
Published electronically: October 18, 2006
MathSciNet review: 2262924
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We answer a question raised by D. Mejía and Ch. Pommerenke by showing that the analytic fixed point function is hyperbolically convex in the unit disc.


References [Enhancements On Off] (What's this?)

  • 1. B. Brown Flinn, Hyperbolic convexity and level sets of analytic functions. Indiana Univ. Math. J. 32 (1983), 831-841. MR 0721566 (85b:30010)
  • 2. S. Dineen, The Schwarz Lemma. The Claredon Press, Oxford, 1989. MR 1033739 (91f:46064)
  • 3. V. N. Dubinin, Symmetrization in geometric theory of functions of a complex variable. Uspehi Mat. Nauk 49 (1994), 3-76; English translation in Russian Math. Surveys 49:1 (1994), 1-79. MR 1307130 (96b:30054)
  • 4. F. P. Gardiner and N. Lakic, Quasiconformal Teichmüller Theory. Mathematical Surveys and Monographs, 76. American Mathematical Society, Providence, RI, 2000. MR 1730906 (2001d:32016)
  • 5. W. K. Hayman, Subharmonic Functions. Vol. 2. London Mathematical Society Monographs, 20. Academic Press, Inc., London, 1989. MR 1049148 (91f:31001)
  • 6. V. Jørgensen, On an inequality for hyperbolic measure and its applications in the theory of functions. Math. Scand. 4 (1956), 113-124. MR 0084584 (18:885a)
  • 7. D. Mejía, Ch. Pommerenke, The analytic point function in the disc. Comput. Methods Funct. Theory 5 (2005), no. 2, 275-229. MR 2205415 (2006j:30006)
  • 8. D. Mejía, Ch. Pommerenke, The analytic point function II. Preprint.
  • 9. A. Yu. Solynin, Continuous symmetrization of sets. Zap. Nauchn. Semin. LOMI 185 (1990), 125-139; English translation in J. Soviet Math. 59 (1992), 1214-1221. MR 1097593 (92k:28012)
  • 10. A. Yu. Solynin, Functional inequalities via polarization. Algebra i Analiz 6 (1996), 148-185; English translation in St. Petersburg Math. J. 8:1 (1997), 1015-1038. MR 1458141 (98e:30001a)
  • 11. A. Yu. Solynin and M. Vuorinen, Estimates for the hyperbolic metric of the punctured plane and applications. Israel J. Math. 124 (2001), 29-60. MR 1856503 (2002j:30071)
  • 12. R. Sperb, Maximum Principles and Their Applications. Academic Press, Inc., 1981. MR 0615561 (84a:35033)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 30C55, 30F45

Retrieve articles in all journals with MSC (2000): 30C55, 30F45


Additional Information

Alexander Yu. Solynin
Affiliation: Department of Mathematics and Statistics, Texas Tech University, Box 41042, Lubbock, Texas 79409
Email: alex.solynin@ttu.edu

DOI: https://doi.org/10.1090/S0002-9939-06-08661-8
Keywords: Analytic fixed point function, hyperbolic convexity, Riemann surface, hyperbolic metric
Received by editor(s): November 17, 2005
Published electronically: October 18, 2006
Additional Notes: This research was supported in part by NSF grant DMS-0412908
Communicated by: Juha M. Heinonen
Article copyright: © Copyright 2006 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society