Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

A new identity for Parseval frames


Authors: Radu Balan, Peter G. Casazza, Dan Edidin and Gitta Kutyniok
Journal: Proc. Amer. Math. Soc. 135 (2007), 1007-1015
MSC (2000): Primary 42C15; Secondary 94A12
DOI: https://doi.org/10.1090/S0002-9939-06-08930-1
Published electronically: November 14, 2006
MathSciNet review: 2262901
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper we establish a surprising new identity for Parseval frames in a Hilbert space. Several variations of this result are given, including an extension to general frames. Finally, we discuss the derived results.


References [Enhancements On Off] (What's this?)

  • 1. R. Balan, P.G. Casazza, D. Edidin, Signal reconstruction without noisy phase, Appl. Comput. Harmon. Anal. 20 (2006), 345-356. MR 2224902
  • 2. R. Balan, P.G. Casazza, D. Edidin, and G. Kutyniok, Decompositions of frames and a new frame identity, Wavelets XI (San Diego, CA, 2005), 379-388, SPIE Proc. 5914, SPIE, Bellingham, WA, 2005.
  • 3. J.J. Benedetto and M. Fickus, Finite normalized tight frames, Adv. Comput. Math. 18 (2003), 357-385. MR 1968126 (2004c:42059)
  • 4. P.G. Casazza, The art of frame theory, Taiwanese J. of Math. 4 (2000), 129-201. MR 1757401 (2001f:42046)
  • 5. P.G. Casazza, Custom building finite frames, in: Wavelets, frames and operator theory, 61-86, Contemp. Math., 345, Amer. Math. Soc., Providence, RI, 2004. MR 2066822 (2005f:42078)
  • 6. P.G. Casazza and J. Kovacevic, Equal-norm tight frames with erasures, Adv. Comput. Math. 18 (2003), 387-430. MR 1968127 (2004e:42046)
  • 7. P.G. Casazza and G. Kutyniok, A generalization of Gram-Schmidt orthogonalization generating all Parseval frames, Adv. Comput. Math., to appear.
  • 8. R.H. Chan, S.D. Riemenschneider, L. Shen, Z. Shen, Tight frame: an efficient way for high-resolution image reconstruction, Appl. Comput. Harmon. Anal. 17 (2004), 91-115. MR 2067917 (2005h:94006)
  • 9. O. Christensen, An Introduction to Frames and Riesz Bases, Birkhäuser, Boston (2003). MR 1946982 (2003k:42001)
  • 10. Y.C. Eldar and G.D. Forney, Jr., Optimal tight frames and quantum measurement, IEEE Trans. Inform. Theory 48 (2002), 599-610. MR 1889971 (2003c:94006)
  • 11. V.K. Goyal, J. Kovacevic, and J.A. Kelner, Quantized frame expansions with erasures, Appl. Comput. Harmon. Anal. 10 (2001), 203-233. MR 1829801 (2002h:94012)
  • 12. R. Vale and S. Waldron, Tight frames and their symmetries, Constr. Approx. 21 (2005), 83-112. MR 2105392 (2005h:42063)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 42C15, 94A12

Retrieve articles in all journals with MSC (2000): 42C15, 94A12


Additional Information

Radu Balan
Affiliation: Siemens Corporate Research, 755 College Road East, Princeton, New Jersey 08540
Email: radu.balan@siemens.com

Peter G. Casazza
Affiliation: Department of Mathematics, University of Missouri, Columbia, Missouri 65211
Email: pete@math.missouri.edu

Dan Edidin
Affiliation: Department of Mathematics, University of Missouri, Columbia, Missouri 65211
Email: edidin@math.missouri.edu

Gitta Kutyniok
Affiliation: Institute of Mathematics, Justus-Liebig-University Giessen, 35392 Giessen, Germany
Email: gitta.kutyniok@math.uni-giessen.de

DOI: https://doi.org/10.1090/S0002-9939-06-08930-1
Keywords: Bessel sequence, frame, Hilbert space, Parseval frame, Parseval Frame Identity
Received by editor(s): June 13, 2005
Published electronically: November 14, 2006
Additional Notes: The second author was supported by NSF DMS 0405376.
The third author was supported by NSA MDA 904-03-1-0040.
The fourth author was supported by DFG research fellowship KU 1446/5.
Communicated by: Michael T. Lacey
Article copyright: © Copyright 2006 American Mathematical Society

American Mathematical Society