A MINIMUM FIXED POINT THEOREM
FOR SMOOTH FIBER PRESERVING MAPS

CATHERINE LEE

(Communicated by Paul Goerss)

This paper is dedicated to my advisor, Robert F. Brown

ABSTRACT. Let \(p : E \to B \) be a smooth fiber bundle. Given a smooth fiber preserving map \(f : E \to E \), we will show that \(f \) can be deformed by a smooth, fiber preserving homotopy to a smooth map \(g : E \to E \) such that the number of fixed points of \(g \) is equal to the fiberwise Nielsen number of \(f \).

For a given map \(f : X \to X \), where \(X \) is a compact ANR, the Nielsen number of \(f \), denoted \(N(f) \), is a lower bound for the number of fixed points of maps homotopic to \(f \). Wecken proved that if \(X \) is a triangulated manifold of dimension greater than or equal to 3, there is a map \(g \) homotopic to \(f \) that has \(N(f) \) fixed points [6]. A space is said to be Wecken if every self map of it has this property. Brown later proved that topological manifolds of dimension at least 3 are Wecken [1]. The corresponding theorem in the smooth category was proved by Jiang in [4]. He showed that for a smooth manifold \(M \) of dimension \(\geq 3 \), if \(f : M \to M \) is a smooth map, then \(f \) can always be smoothly deformed to a map \(g \) with exactly \(N(f) \) fixed points.

The goal of this note is to apply Jiang’s smooth Wecken theorem to prove a smooth version of a Wecken-type theorem for fiber preserving maps of Heath, Keppelmann and Wong [3]. In the setting of this theorem, \(p : E \to B \) is a fibration of compact connected ANR’s. Then the pair \((f, \bar{f})\) is called a fiber preserving map of \(p \) if \(f : E \to E \), \(\bar{f} : B \to B \) and the condition \(\bar{f}p = pf \) is satisfied. The fiberwise Nielsen number \(N_{\bar{f}}(f, p) \) of \((f, \bar{f})\), also known as the naive addition formula, is then defined to be

\[
N_{\bar{f}}(f, p) = \sum_{x \in \xi} N(f_x),
\]

where \(\xi \) is a set consisting of one point from each essential fixed point class of \(\bar{f} \). If \(g : E \to E \) is homotopic to \(f \) by a fiber preserving homotopy, then \(g \) has at least \(N_{\bar{f}}(f, p) \) fixed points.

Theorem 1 (Heath, Keppelmann, Wong). Let \((f, \bar{f})\) be a fiber preserving map from \(p \) to itself with the property that \(\bar{f} \) is homotopic to a map \(\bar{g} \) that has exactly \(N(\bar{f}) \) fixed points. Suppose further that every fiber over the unique set of essential representatives for \(\bar{g} \) is a Wecken space. Then there is a fiber preserving map \((g, \bar{g})\) that is fiber homotopic to \((f, \bar{f})\) with the property that \(g \) has exactly \(N_{\bar{f}}(f, p) \) fixed points.
For the fiber Wecken theorem in the smooth category, we must assume that we have a smooth fiber bundle. This consists of a smooth surjective map \(p : E \to B \), where \(E \) and \(B \) and the fiber, \(F \), are smooth compact manifolds with or without boundary. Furthermore, \(B \) can be covered by a system of local coordinate neighborhoods \(\{U_\alpha\} \) such that there are diffeomorphisms \(\phi_U : U_\alpha \times F \to p^{-1}(U_\alpha) \) satisfying \(p\phi_U(x, y) = x \).

We will prove the following.

Theorem 2. If \(p : E \to B \) is a smooth fiber bundle with \(\text{dim } B, F \geq 3 \) and \((f, \bar{f}) \) is a smooth fiber preserving homotopy of \(p \), then there exists a smooth fiber preserving map \((g, \bar{g}) \) smoothly fiber preserving homotopic to \((f, \bar{f}) \) such that \(g \) has \(N_F(f, p) \) fixed points.

Proof. First, we can directly apply Jiang’s smooth Wecken theorem to \(\bar{f} \). This gives us a smooth map \(\bar{h} : B \to B \) that is smoothly homotopic to \(f \), by a smooth homotopy \(\alpha_t \), where \(\alpha_0 = \bar{f} \) and \(\alpha_1 = h \), such that \(h \) has \(N(f) \) fixed points. By the smooth covering homotopy theorem \([2]\), there exists a smooth lift \(\tilde{\alpha}_t : E \to E \) of \(\alpha_t \circ p \) since \((f, \bar{f}) \) is a smooth fiber preserving map of \(p \). Let \(h = \tilde{\alpha}_1 \circ \bar{p} ; \) then \((h, \bar{h}) \) is a fiber preserving map of \(p \) that is smoothly fiber homotopic to \((f, \bar{f}) \).

Suppose \(b \) is a fixed point of \(\bar{h} \) and that \(b \) is contained in some local coordinate chart \(V \) that has the local trivialization property. Since \(\bar{h} \) has isolated fixed points, we can find an open neighborhood \(U \) of \(b \) where \(U \subseteq \bar{h}^{-1}(V) \cap V \) and \(U \) has no additional fixed points of \(\bar{h} \). We may assume that \(U \) is the interior of a geodesic ball with center \(b \) and radius 1 (we can always rescale). This implies that any two points in \(U \) can be joined by a unique arc length geodesic that is contained in \(U \).

Let \(h_b = \bar{h}|_{p^{-1}(b)} : p^{-1}(b) \to p^{-1}(b) \). Applying the smooth Wecken theorem to \(h_b \), there exists a smooth map \(g_b \) smoothly homotopic to \(h_b \), by a homotopy we will call \(h_t \), where \(h_0 = g_b \) and \(h_1 = h_b \), such that \(g_b \) has \(N(h_b) \) fixed points. Since \(h_b \) is homotopic to \(f_b \) by the homotopy \(h_t \) above, it follows that \(g_b \) has \(N(f_b) \) fixed points. The local triviality conditions on \(U \) and \(V \) give us a homotopy

\[
\phi_V^{-1} \circ h \circ \phi_U : \{ b \} \times F \to \{ b \} \times F
\]
such that

\[
\phi_V^{-1} \circ h \circ \phi_U(b, y) = (b, \bar{h}_t(b, y)),
\]

where \(\tilde{h}_t \) is a smooth homotopy on \(\{ b \} \times F \). Let \(\tilde{h}_0(b, y) = \bar{g}(b, y) \) and \(\tilde{h}_1(b, y) = \bar{h}(b, y) \).

Since \((h, \bar{h}) \) is a fiber preserving map of \(p \), we have that \(\phi_V^{-1} \circ h \circ \phi_U : U \times F \to V \times F \) is of the form

\[
\phi_V^{-1} \circ h \circ \phi_U(x, y) = (\bar{h}(x), \bar{h}(x, y)),
\]

where \(\bar{h} \) is a smooth map on \(U \times F \). For each \(x \in U \), there exists a unique arc-length parameter geodesic \(\gamma_x : I \to U \), where \(\gamma_x(0) = b \), \(\gamma_x(1) = x \), \(\gamma_x \) depends smoothly on its endpoints and varies continuously with \(x \). Define \(k_t : U \times F \to F \) by

\[
k_t(x, y) = \bar{h}(\gamma_x(t), y).
\]

Then \(k_t \) is a continuous homotopy, where \(k_0(x, y) = \bar{h}(b, y) \) and \(k_1(x, y) = \bar{h}(x, y) \). We can now define a homotopy \(c_t : U \times F \to F \) as follows:

\[
c_t(x, y) = \begin{cases}
\bar{h}_2t(b, y), & \text{if } 0 \leq t \leq \frac{1}{2}, \\
\bar{h}_{2t-1}(x, y), & \text{if } \frac{1}{2} \leq t \leq 1.
\end{cases}
\]
By standard smooth approximation techniques, \(c_t \) can be approximated by a smooth homotopy \(\tilde{c}_t \) with \(\tilde{c}_0(x, y) = \tilde{g}(b, y) \) and \(\tilde{c}_1(x, y) = \tilde{h}(x, y) \).

Consider a smooth monotone increasing function \(B : I \to I \), such that \(B \) equals 0 on the interval \([0, \frac{1}{2}]\) and \(B \) equals 1 on the interval \([\frac{1}{2}, 1]\). Define \(\tilde{l}_t : U \times F \to V \times F \) by
\[
\tilde{l}_t(x, y) = (\tilde{h}(x), \tilde{c}_{t+(-1-t)B(dist(b,x))}(x, y))
\]
where \(dist(b, x) \) is the length of the unique minimal geodesic \(\gamma_x \) joining \(b \) to \(x \). If \(\phi_U^{-1}(z) = (x, y) \), we use \(\tilde{l}_t \) to define a smooth homotopy \(l_t : p^{-1}(U) \to p^{-1}(V) \) by
\[
l_t(z) = \phi_V \circ \tilde{l}_t \circ \phi_U^{-1}(z) = \phi_V(\tilde{h}(x), \tilde{c}_{t+(-1-t)B(dist(b,x))}(x, y)).
\]
Consider
\[
l_0(z) = \phi_V(\tilde{h}(x), \tilde{c}_{B(dist(b,x))}(x, y)).
\]
When \(z \in p^{-1}(b) \), then \(l_0(z) = g_b(z) \). If \(dist(b, x) \geq \frac{1}{4} \), then \(l_0(z) = h(z) \). Note that \(l_t \) is a homotopy ending at \(h(z) \).

Extend \(l_t \) to a smooth fiber preserving homotopy, which we will call \(L_t \), defined on all of \(E \) by taking defining \(L_t \) to be \(h \) outside of the neighborhood of \(p^{-1}(b) \). Define \(g \) to be \(L_0 \). Now \(g \) is a smooth self map of \(E \) that is smoothly homotopic to \(h \), where \(g|_{p^{-1}(b)} = g_b \) and \(g = h \) outside of a neighborhood of \(p^{-1}(b) \). The map \(g \) has \(N(f_b) \) fixed points on the fiber \(p^{-1}(b) \) over the fixed point \(b \). Repeated application of this process produces a map \(g \) that has \(N(f, p) = \sum_{x \in \xi} N(f_x) \) fixed points, where \(\xi \) is any set of representatives for the essential fixed point classes of \(f \).

References

Department of Mathematics, University of California, Los Angeles, California 90095-1555

Current address: 1111 Laveta Terrace, Los Angeles, California 90026

E-mail address: cathylee@math.ucla.edu