Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Properties preserved under Morita equivalence of $ \mathbf{C}^*$-algebras


Authors: Astrid an Huef, Iain Raeburn and Dana P. Williams
Journal: Proc. Amer. Math. Soc. 135 (2007), 1495-1503
MSC (2000): Primary 46L05
DOI: https://doi.org/10.1090/S0002-9939-06-08625-4
Published electronically: November 29, 2006
MathSciNet review: 2276659
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We show that important structural properties of $ C^*$-algebras and the multiplicity numbers of representations are preserved under Morita equivalence.


References [Enhancements On Off] (What's this?)

  • 1. R.J. Archbold, Upper and lower multiplicity for irreducible representations of $ C^*$-algebras, Proc. London Math. Soc. 69 (1994), 121-143. MR 1272423 (95c:46085)
  • 2. R.J. Archbold and D.W.B. Somerset, Transition probabilities and trace functions for $ C^*$-algebras, Math. Scand. 73 (1993), 81-111. MR 1251700 (95f:46095)
  • 3. R.J. Archbold, D.W.B. Somerset and J. Spielberg, Upper multiplicity and bounded trace ideals in $ C^*$-algebras, J. Funct. Anal. 146 (1997), 430-463. MR 1451999 (98d:46062)
  • 4. R.J. Archbold and J. Spielberg, Upper and lower multiplicity for irreducible representations of $ C^*$-algebras. II, J. Operator Theory 36 (1996), 201-231. MR 1432116 (97k:46065)
  • 5. W. Beer, On Morita equivalence of nuclear $ C^*$-algebras, J. Pure Appl. Algebra 26 (1982), 249-267.MR 0678523 (84d:46096)
  • 6. J. Dixmier, $ C^*$-Algebras, North-Holland, New York, 1977.MR 0458185 (56:16388)
  • 7. D. Milicic, On $ C^*$-algebras with bounded trace, Glasnik Mat. Ser. III 8(28) (1973), 7-22. MR 0324429 (48:2781)
  • 8. G.K. Pedersen, Measure theory for $ C^*$-algebras III, Math. Scand. 25 (1969), 71-93. MR 0259627 (41:4263)
  • 9. G.K. Pedersen, $ C^*$-Algebras and their Automorphism Groups, Academic Press, London, 1979. MR 0548006 (81e:46037)
  • 10. G.K. Pedersen, Analysis Now, Graduate Texts in Math., vol. 118, Springer-Verlag, New York, 1989. MR 0971256 (90f:46001)
  • 11. F. Perdrizet, Topologie et traces sur les $ C^*$-algèbres, Bull. Soc. Math. France 99 (1971), 193-239.MR 0293409 (45:2486)
  • 12. I. Raeburn and D.P. Williams, Morita Equivalence and Continuous-Trace $ C^*$-Algebras, Math. Surveys and Monographs, vol. 60, Amer. Math. Soc., Providence, 1998. MR 1634408 (2000c:46108)
  • 13. H.H. Zettl, Strong Morita equivalence of $ C^*$-algebras preserves nuclearity, Arch. Math. (Basel) 38 (1982), 448-452. MR 0666919 (84b:46070)
  • 14. H.H. Zettl, Ideals in Hilbert modules and invariants under strong Morita equivalence of $ C^*$-algebras, Arch. Math. (Basel) 39 (1982), 69-77. MR 0674535 (84i:46060)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 46L05

Retrieve articles in all journals with MSC (2000): 46L05


Additional Information

Astrid an Huef
Affiliation: School of Mathematics, The University of New South Wales, NSW 2052, Australia
Email: astrid@unsw.edu.au

Iain Raeburn
Affiliation: School of Mathematical and Physical Sciences, University of Newcastle, NSW 2308, Australia
Email: iain.raeburn@newcastle.edu.au

Dana P. Williams
Affiliation: Department of Mathematics, Dartmouth College, Hanover, New Hampshire 03755
Email: dana.williams@dartmouth.edu

DOI: https://doi.org/10.1090/S0002-9939-06-08625-4
Received by editor(s): December 1, 2005
Received by editor(s) in revised form: January 3, 2006
Published electronically: November 29, 2006
Additional Notes: This research was supported by the Australian Research Council, the National Science Foundation, the Ed Shapiro Fund at Dartmouth College and the University of New South Wales.
Communicated by: Joseph A. Ball
Article copyright: © Copyright 2006 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society