EQUIVARIANT CRYSSTALLINE COHOMOLOGY
AND BASE CHANGE

ELMAR GROSSE-KLÖNNE

(Communicated by Michael Stillman)

Abstract. Given a perfect field \(k \) of characteristic \(p > 0 \), a smooth proper \(k \)-scheme \(Y \), a crystal \(E \) on \(Y \) relative to \(W(k) \) and a finite group \(G \) acting on \(Y \) and \(E \), we show that, viewed as a virtual \(k[G] \)-module, the reduction modulo \(p \) of the crystalline cohomology of \(E \) is the de Rham cohomology of \(E \) modulo \(p \). On the way we prove a base change theorem for the virtual \(G \)-representations associated with \(G \)-equivariant objects in the derived category of \(W(k) \)-modules.

1. The theorem

Let \(k \) be a perfect field of characteristic \(p > 0 \), let \(W \) denote its ring of Witt vectors, let \(K = \text{Quot}(W) \). Let \(Y \) be a proper and smooth \(k \)-scheme and suppose that the finite group \(G \) acts (from the right) on \(Y \). Let \(E \) be a locally free, finitely generated crystal of \(\mathcal{O}_Y/W \)-modules and suppose that for each \(g \in G \) we are given an isomorphism of crystals \(\tau_g : E \to g^*E \) (where \(g^*E \) denotes the pull-back of \(E \) via \(g : Y \to Y \) such that \(g^2(\tau_{g_1}) \circ \tau_{g_2} = \tau_{g_2 g_1} \) (equality as maps \(E \to (g_2 g_1)^*E = g_2^* g_1^*E \)) for any two \(g_1, g_2 \in G \). For \(s \in \mathbb{Z} \) let \(H^{s}_{\text{cryst}}(Y/W, E) \) denote the \(s \)-th crystalline cohomology group (relative to \(\text{Spf}(W) \)) of the crystal \(E \), a finitely generated \(W \)-module which is zero if \(s \notin [0, 2 \dim(Y)] \) (see [H]). On the other hand, the reduction modulo \(p \) of the crystal \(E \) is equivalent with a locally free \(\mathcal{O}_Y \)-module \(E_k \) with connection \(E_k \to \Omega_{Y/W}^1 \otimes_{\mathcal{O}_Y} E_k \); here \(\Omega_{Y/W}^1 \) denotes the \(\mathcal{O}_Y \)-module of differentials of \(Y/k \). Let \(\Omega_{Y/W}^s \otimes E_k \) denote the corresponding de Rham complex. The cohomology group \(H^s(Y, \Omega_{Y/W}^s \otimes E_k) \) is a finite-dimensional \(k \)-vector space which is zero if \(s \notin [0, 2 \dim(Y)] \). The isomorphisms \(\tau_g \) for \(g \in G \) provide each \(H^s_{\text{cryst}}(Y/W, E) \), each \(H^s(Y, \Omega_{Y/W}^s \otimes E_k) \) and each \(H^t(Y, \Omega_{Y/W}^s \otimes E_k) \) for \(t \geq 0 \) with an action of \(G \) (from the left). By definition, the reduction modulo \(p \) of the \(k[G] \)-module \(H^s_{\text{cryst}}(Y/W, E) \otimes_W K \) is the \(k[G] \)-module obtained by reducing modulo \(p \) the \(G \)-stable \(W \)-lattice \(H^s_{\text{cryst}}(Y/W, E)/\text{(torsion)} \) in \(H^s_{\text{cryst}}(Y/W, E) \otimes_W K \).

Theorem 1.1. For any \(j \), the following three virtual \(k[G] \)-modules are the same:
(i) the reduction modulo \(p \) of the virtual \(k[G] \)-module

\[
\sum_s (-1)^s H^{j+s}_{\text{cryst}}(Y/W, E) \otimes_W K;
\]
(ii) \(\sum_s (-1)^s H^s(Y, \Omega^s_Y \otimes E_k) \);
(iii) \(\sum_{s,t} (-1)^{s+t} H^s(Y, \Omega^t_Y \otimes E_k) \).

An obvious variant of Theorem 1.1 holds in logarithmic crystalline cohomology, for crystals \(E \) on the logarithmic crystalline site of \(Y/W \) with respect to a log structure defined by a normal crossings divisor on \(Y \). Similarly, the proof which we give below also shows the analog of Theorem 1.1 for the \(\ell \)-adic cohomology (\(\ell \neq p \)) of constructible \(\ell \)-adic sheaves on \(Y \), even if \(Y/k \) is not proper. Of course, the result in the \(\ell \)-adic case (even for nonproper \(Y/k \)) is well known; it has been used for investigating the reduction modulo \(\ell \) of the Deligne-Lusztig characters, usually defined via

In [3] we use the variant of Theorem 1.1 in logarithmic crystalline cohomology to show that these Deligne-Lusztig characters, usually defined via \(\ell \)-adic cohomology of certain \(\mathbb{F} \)-varieties which are nonproper in general, can also be expressed through the log crystalline cohomology of suitable log crystals on suitable proper and smooth \(\mathbb{F} \)-varieties with a normal crossings divisor. Unfortunately, the (more geometric) proof of the \(\ell \)-adic analog of Theorem 1.1 (due to Deligne and Lusztig; see for example [2], Lemma 12.4 and A3.15) breaks down for crystalline cohomology. On the other hand, our proof of Theorem 1.1 contains a result (Theorem 2.1) on

Theorem 2.1 holds in logarithmic crystalline cohomology, for crystals \(E \) on the logarithmic crystalline site of \(Y/W \) with respect to a log structure defined by a normal crossings divisor on \(Y \). Similarly, the proof which we give below also shows the analog of Theorem 1.1 for the \(\ell \)-adic cohomology (\(\ell \neq p \)) of constructible \(\ell \)-adic sheaves on \(Y \), even if \(Y/k \) is not proper. Of course, the result in the \(\ell \)-adic case (even for nonproper \(Y/k \)) is well known; it has been used for investigating the reduction modulo \(\ell \) of the Deligne-Lusztig characters, usually defined via

In [3] we use the variant of Theorem 1.1 in logarithmic crystalline cohomology to show that these Deligne-Lusztig characters, usually defined via \(\ell \)-adic cohomology of certain \(\mathbb{F} \)-varieties which are nonproper in general, can also be expressed through the log crystalline cohomology of suitable log crystals on suitable proper and smooth \(\mathbb{F} \)-varieties with a normal crossings divisor. Unfortunately, the (more geometric) proof of the \(\ell \)-adic analog of Theorem 1.1 (due to Deligne and Lusztig; see for example [2], Lemma 12.4 and A3.15) breaks down for crystalline cohomology. On the other hand, our proof of Theorem 1.1 contains a result (Theorem 2.1) on

2. The proof

Proof of Theorem 1.1. (ii)=(iii) is clear. By [1] we know that the total crystalline cohomology \(\mathbb{R} \Gamma_{\text{crys}}(Y/W, E) \), as an object in the derived category \(D(W) \) of the category of \(W \)-modules, is represented by a complex of \(W \)-modules of finite torsion-dimension and with finitely generated cohomology; by functoriality, \(G \) acts on \(\mathbb{R} \Gamma_{\text{crys}}(Y/W, E) \). Also from [1] we know that the total crystalline cohomology commutes with base change, i.e. that \(\mathbb{R} \Gamma_{\text{crys}}(Y/W, E) \otimes_k \hat{k} \) is the total crystalline cohomology of the reduction modulo \(p \) of \(E \) (as a crystal relative to \(\text{Spec}(k) \)). But the latter is known (see [1], Corollary 7.4) to be the de Rham cohomology of \(E_k \); i.e., its \(s \)-th cohomology group is \(H^s(Y, \Omega^s_Y \otimes E_k) \). Hence (i)=(ii) follows from Theorem 2.1 below.

Let \(A \) be a complete discrete valuation ring with perfect residue field \(k \) of characteristic \(p > 0 \) and fraction field \(K \) of characteristic 0. Let \(L^\bullet \) be a complex of \(A \)-modules of finite torsion-dimension and with finitely generated cohomology; by [1], Lemma 7.15, this is equivalent with saying that \(L^\bullet \) is quasi-isomorphic to a strictly perfect complex, i.e. a bounded complex of finitely generated projective \(A \)-modules. Suppose the finite group \(G \) acts on \(L^\bullet \) when \(L^\bullet \) is viewed as an object in the derived category \(D(A) \) of the category of \(A \)-modules. Then each cohomology group \(H^i(L^\bullet \otimes_A K) = H^i(L^\bullet) \otimes_A K \) (resp. each cohomology group \(H^i(L^\bullet \otimes_{\mathbb{F}_k} k) \)) becomes a representation of \(G \) on a finite-dimensional \(K \)-vector space (resp. \(k \)-vector space).

Theorem 2.1. The virtual \(k[G] \)-module \(\sum_i (-1)^i H^i(L^\bullet \otimes_{\mathbb{F}_k} k) \) is the reduction (modulo the maximal ideal of \(A \)) of the virtual \(K[G] \)-module \(\sum_i (-1)^i H^i(L^\bullet) \otimes_A K \). Equivalently, the restriction of the character of \(\sum_i (-1)^i H^i(L^\bullet) \otimes_A K \) to the subset of \(p \)-regular elements of \(G \) is the Brauer character of \(\sum_i (-1)^i H^i(L^\bullet \otimes_{\mathbb{F}_k} k) \).

We say that the automorphism \(\gamma \) of the finitely generated \(A \)-module \(M \) is *prime to \(p \)* if and only if the following holds. For any finite extension \(A' \supset A \) with a discrete
valuation ring A' and for any two $\gamma \otimes_A A'$-stable submodules N, N' of $M \otimes_A A'$ with $N' \subset N$ and such that N/N' is a cyclic A'-module, the endomorphism which $\gamma \otimes_A A'$ induces on N/N' is of finite order prime to p.

Lemma 2.2. Let γ be an automorphism of the finitely generated A-module M.

(a) If M is free, then γ is prime to p if and only if the roots of the characteristic polynomial of γ are roots of unity of order prime to p. In particular, $\gamma|_N : N \rightarrow N$ is prime to p for each submodule N of M with $\gamma(N) = N$.

(b) Let $M_1 \subset M$ be a submodule with $\gamma(M_1) = M_1$ and such that $M_2 = M/M_1$ is free. Let γ_1, resp. γ_2, be the induced automorphism of M_1, resp. of M_2. If γ_1 and γ_2 are prime to p, then γ is prime to p.

Proof. Statement (a) is clear. (b) Let $N' \subset N \subset M \otimes_A A'$ be as in the definition. If $N \subset M_1 \otimes_A A'$ the hypothesis on γ_1 applies. Otherwise, since $M_2 \otimes_A A'$ is free over A' and N/N' is cyclic, N/N' maps injectively to $M_2 \otimes_A A'$ and the hypothesis on γ_2 applies. \hfill \square

Proof of Theorem 2.1. The problem is of course that the $H^i(L^\bullet)$ may have torsion, i.e., $H^i(L^\bullet) \otimes_A k \neq H^i(L^\bullet \otimes_A k)$ in general. Similarly, the task would be easy if we knew that there is a strictly perfect complex K^\bullet quasi-isomorphic to L^\bullet such that the action of G on L^\bullet in $D(A)$ is given by the action of G on K^\bullet by true morphisms of complexes (not just by morphisms in $D(A)$). We introduce some notation. For an automorphism $\gamma : L^\bullet \rightarrow L^\bullet$ in $D(A)$ let $\xi^i_1, \ldots, \xi^i_{n(i)}$ (with $n(i) = \dim_k H^i(L^\bullet \otimes_A k)$) denote the roots of the characteristic polynomial of γ acting on $H^i(L^\bullet \otimes_A k)$ and let $\bar{\xi}_1, \ldots, \bar{\xi}_{n(i)}$ denote their Teichmüller liftings. On the other hand, let $\xi'^i_1, \ldots, \xi'^i_{n'(i)}$ (with $n'(i) = \dim_K H^i(L^\bullet) \otimes_A K$) denote the roots of the characteristic polynomial of γ acting on $H^i(L^\bullet) \otimes_A K$. Then let

$$Br(\gamma, H^\varnothing(L^\bullet \otimes_A k)) = \sum_i (-1)^i \sum_j \xi^i_j,$$

$$Tr(\gamma, H^\varnothing(L^\bullet) \otimes_A K) = \sum_i (-1)^i \sum_j \xi'^i_j.$$

What we must show is that for all p-regular elements $g \in G$ (those whose order in G is not divisible by p), if $\gamma : L^\bullet \rightarrow L^\bullet$ denotes the corresponding automorphism of L^\bullet in $D(A)$, then

$$Br(\gamma, H^\varnothing(L^\bullet \otimes_A k)) = Tr(\gamma, H^\varnothing(L^\bullet) \otimes_A K).$$

Clearly it is enough to show the following statement. For any strictly perfect complex L^\bullet of A-modules (not necessarily endowed with a G-action in $D(A)$) and for any automorphism $\gamma : L^\bullet \rightarrow L^\bullet$ in $D(A)$ which on the cohomology modules induces automorphisms prime to p we have

$$Br(\gamma, H^\varnothing(L^\bullet \otimes_A k)) = Tr(\gamma, H^\varnothing(L^\bullet) \otimes_A K).$$

We use induction on the minimal $m \in \mathbb{Z}_{>0}$ with the following property: after a suitable degree shift we have $L^i = 0$ for all $i \notin [0, m]$. For $m = 0$ the statement is clear from Lemma 2.2(a). Now let $m \geq 1$; shifting degrees we may assume $L^i = 0$ for all $i \notin [0, m]$. For $m = 1$ the statement is clear from Lemma 2.2(a), as in the proof of Theorem 1.1. The problem of course is that the $H^i(L^\bullet)$ may have torsion, i.e., $H^i(L^\bullet) \otimes_A k \neq H^i(L^\bullet \otimes_A k)$ in general. Similarly, the task would be easy if we knew that there is a strictly perfect complex K^\bullet quasi-isomorphic to L^\bullet such that the action of G on L^\bullet in $D(A)$ is given by the action of G on K^\bullet by true morphisms of complexes (not just by morphisms in $D(A)$). We introduce some notation. For an automorphism $\gamma : L^\bullet \rightarrow L^\bullet$ in $D(A)$ let $\xi^i_1, \ldots, \xi^i_{n(i)}$ (with $n(i) = \dim_k H^i(L^\bullet \otimes_A k)$) denote the roots of the characteristic polynomial of γ acting on $H^i(L^\bullet \otimes_A k)$ and let $\bar{\xi}_1, \ldots, \bar{\xi}_{n(i)}$ denote their Teichmüller liftings. On the other hand, let $\xi'^i_1, \ldots, \xi'^i_{n'(i)}$ (with $n'(i) = \dim_K H^i(L^\bullet) \otimes_A K$) denote the roots of the characteristic polynomial of γ acting on $H^i(L^\bullet) \otimes_A K$. Then let

$$Br(\gamma, H^\varnothing(L^\bullet \otimes_A k)) = \sum_i (-1)^i \sum_j \xi^i_j,$$

$$Tr(\gamma, H^\varnothing(L^\bullet) \otimes_A K) = \sum_i (-1)^i \sum_j \xi'^i_j.$$
for all $i \notin [0, m]$. Let $d^m : L^{m-1} \to L^m$ denote the differential. Choose a sub-k-vector space N^m_k of $L^{m-1} \otimes k$ which under $d^m \otimes k$ maps isomorphically to the kernel of

$$L^m \otimes k \to H^m(L^\bullet \otimes k) = H^m(L^\bullet) \otimes k.$$

Then $N^m_k = N^{m-1}_k \otimes k$ for a direct summand N^{m-1} of L^{m-1}. By construction, N^{m-1} maps isomorphically to its image N^m in L^m. Thus, setting $N^i = 0$ if $i \notin \{m-1, m\}$, the subcomplex N^\bullet of L^\bullet is acyclic. Dividing it out we may therefore assume $L^m \otimes k = H^m(L^\bullet \otimes k)$. Since the functor $K^-(\text{proj} - A) \to D(A)$ from the homotopy category of complexes of projective A-modules bounded above to $D(A)$ is fully faithful, the action of γ on L^\bullet in $D(A)$ is in fact represented by a true morphism of complexes $\gamma^\bullet : L^\bullet \to L^\bullet$. Base changing to a finite extension of A by a discrete valuation ring (this does not affect the numbers Br and Tr) we may suppose that the characteristic polynomial of $\gamma^m : L^m \to L^m$ splits in A (we remark that γ^m is bijective: this follows from $L^m \otimes k = H^m(L^\bullet \otimes k)$ and the fact that γ acts bijectively on $H^m(L^\bullet \otimes k)$). We therefore find a γ^m-stable filtration

$$F^e = F^0 \subset F^1 \subset \ldots \subset F^s = L^m \quad (s = \text{rk}(L^m))$$

such that $G^e = F^e/F^{e-1}$ is free of rank one, for any $1 \leq e \leq s$. The cyclic A-module

$$F^e/(F^e \cap \text{im}(d^m)) + F^{e-1}$$

is a γ^m-stable subquotient of $H^m(L^\bullet)$ (it is nonzero because of $L^m \otimes k = H^m(L^\bullet \otimes k)$); hence γ^m acts on it by multiplication with a root of unity of order prime to p. Let $\xi_e \in A^\times$ denote its Teichmüller lifting. Choose $t_e \in F^e$ which represents a basis element of G^e; then t_1, \ldots, t_s is a basis of L^m. Modulo F^{e-1} the class of $\xi_e t_e - \gamma^m(t_e) \in F^e$ lies in $\text{im}(d^m)$. Choose a $t_e \in L^{m-1}$ with

$$d^m(t_e) = \xi_e t_e - \gamma^m(t_e) \bmod F^{e-1}.$$

Let $t : L^m \to L^{m-1}$ denote the A-linear map which sends t_e to t_e, for each $1 \leq e \leq s$. Using t we see that we may modify γ^\bullet within its homotopy class to achieve that the filtration [1] is still γ^m-stable and such that γ^m acts on each G^e by multiplication with a root of unity of prime-to-p order in A^\times. Therefore we may assume that $\gamma^m : L^m \to L^m$ is prime to p. Let $L^m_i = L^m$ and $L^m_i = 0$ for $i \neq m$. Then L^m_1 is a γ^\bullet-stable subcomplex of L^\bullet and since $\text{Br}(\gamma)$ and $\text{Tr}(\gamma)$ are additive in exact γ^\bullet-equivariant sequences of complexes it suffices to show $\text{Br}(\gamma) = \text{Tr}(\gamma)$ for the complexes L^m_1 and L^\bullet/L^m_1. Since these complexes are shorter than L^\bullet this follows from the induction hypothesis. Indeed, the prime-to-p hypothesis is clearly satisfied for L^m_1, so it remains to show that γ^\bullet induces automorphisms prime to p on the cohomology modules of L^\bullet/L^m_1. In degrees smaller than $m - 1$ this is clear from the corresponding hypothesis on L^\bullet: only $H^{m-1}(L^\bullet/L^m_1)$ is critical. But $H^{m-1}(L^\bullet)$ is a submodule of $H^{m-1}(L^\bullet/L^m_1)$ and the quotient

$$Q = H^{m-1}(L^\bullet/L^m_1)/H^{m-1}(L^\bullet)$$

maps isomorphically to a submodule of $L^m_1 = L^m$. By Lemma [2.2(b)] it suffices to show that γ^\bullet induces automorphisms prime to p on $H^{m-1}(L^\bullet)$ and on Q. For $H^{m-1}(L^\bullet)$ this holds by hypothesis; for Q this follows from Lemma [2.2(a)]. □
References

Mathematisches Institut der Universität Münster, Einsteinstrasse 62, 48149 Münster, Germany
E-mail address: klonne@math.uni-muenster.de