Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 

 

On the coefficients of Hilbert quasipolynomials


Authors: Winfried Bruns and Bogdan Ichim
Journal: Proc. Amer. Math. Soc. 135 (2007), 1305-1308
MSC (2000): Primary 13A02
DOI: https://doi.org/10.1090/S0002-9939-06-08834-4
Published electronically: November 15, 2006
MathSciNet review: 2276638
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The Hilbert function of a module over a positively graded algebra is of quasi-polynomial type (Hilbert-Serre). We derive an upper bound for its grade, i.e. the index from which on its coefficients are constant. As an application, we give a purely algebraic proof of an old combinatorial result (due to Ehrhart, McMullen and Stanley).


References [Enhancements On Off] (What's this?)

  • [BH] W. Bruns and J. Herzog. Cohen-Macaulay Rings. Rev. ed. Cambridge University Press, 1998.
  • [E] E. Ehrhart, Polynômes arithmétiques et méthode des polyèdres en combinatoire, Birkhäuser Verlag, Basel-Stuttgart, 1977. International Series of Numerical Mathematics, Vol. 35. MR 0432556
  • [M] P. McMullen, Lattice invariant valuations on rational polytopes, Arch. Math. (Basel) 31 (1978/79), no. 5, 509–516. MR 526617, https://doi.org/10.1007/BF01226481
  • [S] Richard P. Stanley, Decompositions of rational convex polytopes, Ann. Discrete Math. 6 (1980), 333–342. Combinatorial mathematics, optimal designs and their applications (Proc. Sympos. Combin. Math. and Optimal Design, Colorado State Univ., Fort Collins, Colo., 1978). MR 593545

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 13A02

Retrieve articles in all journals with MSC (2000): 13A02


Additional Information

Winfried Bruns
Affiliation: FB Mathematik/Informatik, Universität Osnabrück, 49069 Osnabrück, Germany
Email: winfried@math.uos.de

Bogdan Ichim
Affiliation: FB Mathematik/Informatik, Universität Osnabrück, 49069 Osnabrück, Germany; and Institute of Mathematics, C.P. 1-764, 70700 Bucharest, Romania
Email: bogdan.ichim@math.uos.de; bogdan.ichim@imar.ro

DOI: https://doi.org/10.1090/S0002-9939-06-08834-4
Keywords: Hilbert quasi-polynomial, Ehrhart quasi-polynomial
Received by editor(s): December 22, 2005
Published electronically: November 15, 2006
Communicated by: Bernd Ulrich
Article copyright: © Copyright 2006 American Mathematical Society