On finite-time blow-up for a nonlocal parabolic problem arising from shear bands in metals

Author:
Gao-Feng Zheng

Journal:
Proc. Amer. Math. Soc. **135** (2007), 1487-1494

MSC (2000):
Primary 35K10, 35K57, 35K60.

Published electronically:
November 27, 2006

MathSciNet review:
2276658

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Results on finite-time blow-up of solutions to the nonlocal parabolic problem

**1.**Hamid Bellout,*A criterion for blow-up of solutions to semilinear heat equations*, SIAM J. Math. Anal.**18**(1987), no. 3, 722–727. MR**883564**, 10.1137/0518055**2.**Jerrold Bebernes and David Eberly,*Mathematical problems from combustion theory*, Applied Mathematical Sciences, vol. 83, Springer-Verlag, New York, 1989. MR**1012946****3.**J. W. Bebernes and A. A. Lacey,*Global existence and finite-time blow-up for a class of nonlocal parabolic problems*, Adv. Differential Equations**2**(1997), no. 6, 927–953. MR**1606347****4.**J. W. Bebernes and Paul Talaga,*Nonlocal problems modelling shear banding*, Comm. Appl. Nonlinear Anal.**3**(1996), no. 2, 79–103. MR**1379441****5.**J. Bebernes, C. Li, and P. Talaga,*Single-point blowup for nonlocal parabolic problems*, Phys. D**134**(1999), no. 1, 48–60. MR**1711136**, 10.1016/S0167-2789(99)00057-3**6.**Haïm Brezis, Thierry Cazenave, Yvan Martel, and Arthur Ramiandrisoa,*Blow up for 𝑢_{𝑡}-Δ𝑢=𝑔(𝑢) revisited*, Adv. Differential Equations**1**(1996), no. 1, 73–90. MR**1357955****7.**D. G. de Figueiredo, P.-L. Lions, and R. D. Nussbaum,*A priori estimates and existence of positive solutions of semilinear elliptic equations*, J. Math. Pures Appl. (9)**61**(1982), no. 1, 41–63. MR**664341****8.**B. Gidas, Wei Ming Ni, and L. Nirenberg,*Symmetry and related properties via the maximum principle*, Comm. Math. Phys.**68**(1979), no. 3, 209–243. MR**544879****9.**David Gilbarg and Neil S. Trudinger,*Elliptic partial differential equations of second order*, Classics in Mathematics, Springer-Verlag, Berlin, 2001. Reprint of the 1998 edition. MR**1814364****10.**D. D. Joseph and T. S. Lundgren,*Quasilinear Dirichlet problems driven by positive sources*, Arch. Rational Mech. Anal.**49**(1972/73), 241–269. MR**0340701**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (2000):
35K10,
35K57,
35K60.

Retrieve articles in all journals with MSC (2000): 35K10, 35K57, 35K60.

Additional Information

**Gao-Feng Zheng**

Affiliation:
Department of Mathematics, Huazhong Normal University, Wuhan, People’s Republic of China

Email:
gfzheng76@yahoo.com.cn

DOI:
https://doi.org/10.1090/S0002-9939-06-08925-8

Keywords:
Nonlocal parabolic equations,
finite-time blow-up,
method of moving planes.

Received by editor(s):
October 5, 2005

Received by editor(s) in revised form:
December 20, 2005

Published electronically:
November 27, 2006

Communicated by:
David S. Tartakoff

Article copyright:
© Copyright 2006
American Mathematical Society

The copyright for this article reverts to public domain 28 years after publication.