A Berry-Esseen theorem for hypergeometric probabilities under minimal conditions

Authors:
S. N. Lahiri and A. Chatterjee

Journal:
Proc. Amer. Math. Soc. **135** (2007), 1535-1545

MSC (2000):
Primary 60F05; Secondary 60G10, 62E20, 62D05.

Published electronically:
January 5, 2007

MathSciNet review:
2276664

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper, we consider simple random sampling without replacement from a dichotomous finite population and derive a necessary and sufficient condition on the finite population parameters for a valid large sample Normal approximation to Hypergeometric probabilities. We then obtain lower and upper bounds on the difference between the Normal and the Hypergeometric distributions solely under this necessary and sufficient condition.

**1.**G. Jogesh Babu and Kesar Singh,*Edgeworth expansions for sampling without replacement from finite populations*, J. Multivariate Anal.**17**(1985), no. 3, 261–278. MR**813236**, 10.1016/0047-259X(85)90084-3**2.**M. Bloznelis,*A Berry-Esseen bound for finite population Student’s statistic*, Ann. Probab.**27**(1999), no. 4, 2089–2108. MR**1742903**, 10.1214/aop/1022677563**3.**Mindaugas Bloznelis and Friedrich Götze,*An Edgeworth expansion for finite-population 𝑈-statistics*, Bernoulli**6**(2000), no. 4, 729–760. MR**1777694**, 10.2307/3318517**4.**Colin R. Blyth and Robert G. Staudte,*Hypothesis estimates and acceptability profiles for 2×2 contingency tables*, J. Amer. Statist. Assoc.**92**(1997), no. 438, 694–699. MR**1467859**, 10.2307/2965717**5.**Burstein, H. (1975). Finite population correction for binomial confidence limits.*Journal of the American Statistical Association***70**67-69.**6.**Paul Erdős and Alfréd Rényi,*On the central limit theorem for samples from a finite population*, Magyar Tud. Akad. Mat. Kutató Int. Közl.**4**(1959), 49–61 (English, with Hungarian and Russian summaries). MR**0107294****7.**William Feller,*An introduction to probability theory and its applications. Vol. II.*, Second edition, John Wiley & Sons, Inc., New York-London-Sydney, 1971. MR**0270403****8.**Jaroslav Hájek,*Limiting distributions in simple random sampling from a finite population*, Magyar Tud. Akad. Mat. Kutató Int. Közl.**5**(1960), 361–374 (English, with Russian summary). MR**0125612****9.**Lahiri, S. N., Chatterjee, A. and Maiti, T. (2004). A Sub-Gaussian Berry-Esseen Theorem for the Hypergeometric probabilities.*Preprint # 2004-21*(posted at*http://seabiscuit.stat.iastate.edu/departmental/preprint/preprint.html#2004*), Iowa State University, IA (also, posted as*math.PR/0602276*at*http://arxiv.org*).**10.**W. L. Nicholson,*On the normal approximation to the hypergeometric distribution*, Ann. Math. Statist.**27**(1956), 471–483. MR**0087246****11.**William G. Madow,*On the limiting distributions of estimates based on samples from finite universes*, Ann. Math. Statistics**19**(1948), 535–545. MR**0029136****12.**Patel, J. K. and Samaranayake, V. A. (1991). Prediction intervals for some discrete distributions.*Journal of Quality Technology***23**270-278.**13.**Seber, G. A. F. (1970). The effects of trap response on tag recapture estimates.*Biometrics***26**13-22.**14.**Sohn, S. Y. (1997). Accelerated life-tests for intermittent destructive inspection, with logistic failure-distribution.*IEEE Transactions on Reliability***46**122-1295.**15.**John P. Wendell and Josef Schmee,*Exact inference for proportions from a stratified finite population*, J. Amer. Statist. Assoc.**91**(1996), no. 434, 825–830. MR**1395749**, 10.2307/2291677**16.**Wittes, J. T. (1972). On the bias and estimated variance of Chapman's two-sample capture-recapture population estimate.*Biometrics***28**592-597.

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (2000):
60F05,
60G10,
62E20,
62D05.

Retrieve articles in all journals with MSC (2000): 60F05, 60G10, 62E20, 62D05.

Additional Information

**S. N. Lahiri**

Affiliation:
Department of Statistics, Iowa State University, Ames, Iowa 50011

Address at time of publication:
Department of Statistics, Texas A&M University, College Station, Texas 77843

Email:
snlahiri@iastate.edu

**A. Chatterjee**

Affiliation:
Department of Statistics, Iowa State University, Ames, Iowa 50011

Address at time of publication:
Department of Statistics, Texas A&M University, College Station, Texas 77843

Email:
cha@iastate.edu

DOI:
https://doi.org/10.1090/S0002-9939-07-08676-5

Received by editor(s):
April 12, 2005

Received by editor(s) in revised form:
February 16, 2006

Published electronically:
January 5, 2007

Additional Notes:
This research was partially supported by NSF grant no. DMS 0306574.

Communicated by:
Edward C. Waymire

Article copyright:
© Copyright 2007
American Mathematical Society

The copyright for this article reverts to public domain 28 years after publication.