Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Exponential growth of Lie algebras of finite global dimension


Authors: Yves Felix, Steve Halperin and Jean-Claude Thomas
Journal: Proc. Amer. Math. Soc. 135 (2007), 1575-1578
MSC (2000): Primary 55P35, 55P62, 17B70
DOI: https://doi.org/10.1090/S0002-9939-07-08721-7
Published electronically: January 8, 2007
MathSciNet review: 2276669
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ L$ be a connected finite type graded Lie algebra. If dim $ L = \infty$ and gldim $ \, L<\infty$, then log index $ \, L=\alpha >0$. If, moreover, $ \alpha<\infty$, then for some $ d$, $ \sum_{i=1}^{d-1}$   dim$ \, L_{k+i} = e^{k\alpha_k}\,,\,\, $ where $ \alpha_k \to $ log index $ L$ as $ k\to \infty\,.$


References [Enhancements On Off] (What's this?)

  • 1. H. Cartan and S. Eilenberg, Homological algebra, Princeton University Press, 1956. MR 0077480 (17:1040e)
  • 2. Y. Felix, S. Halperin and J.-C. Thomas, The homotopy Lie algebra for finite complexes, Publications Mathématiques de l'I.H.E.S. 56 (1983), 179-202. MR 0686046 (85c:55010)
  • 3. Y. Felix, S. Halperin and J.-C. Thomas, Rational Homotopy Theory, Graduate Texts in Mathematics 205, Springer-Verlag, 2000. MR 1802847 (2002d:55014)
  • 4. Y. Felix, S. Halperin and J.-C. Thomas, Growth and Lie brackets in the homotopy Lie algebra, Homology, Homotopy and Applications 4 (2002), 219-225. MR 1918190 (2003g:55014)
  • 5. Y. Felix, S. Halperin and J.-C. Thomas, An asymptotic formula for the ranks of the homotopy groups of a finite complex, preprint 2005.

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 55P35, 55P62, 17B70

Retrieve articles in all journals with MSC (2000): 55P35, 55P62, 17B70


Additional Information

Yves Felix
Affiliation: Institut Mathematique, Université Catholique de Louvain, 2, Chemin du Cyclotron, 1348, Louvain-La-Neuve, Belgium

Steve Halperin
Affiliation: Department of Mathematics, University of Maryland, College Park, Maryland 20742-3281

Jean-Claude Thomas
Affiliation: Faculté des Sciences, Université d’Angers, 49045 Bd Lavoisier, Angers, France

DOI: https://doi.org/10.1090/S0002-9939-07-08721-7
Keywords: Homotopy Lie algebra, graded Lie algebra, global dimension, exponential growth.
Received by editor(s): June 25, 2005
Received by editor(s) in revised form: February 16, 2006
Published electronically: January 8, 2007
Communicated by: Paul Goerss
Article copyright: © Copyright 2007 American Mathematical Society

American Mathematical Society