Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Regularity criterion via the pressure on weak solutions to the 3D Navier-Stokes equations


Authors: Chen Qionglei and Zhang Zhifei
Journal: Proc. Amer. Math. Soc. 135 (2007), 1829-1837
MSC (2000): Primary 35Q30, 35B65, 76D03
DOI: https://doi.org/10.1090/S0002-9939-06-08663-1
Published electronically: December 29, 2006
MathSciNet review: 2286093
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We consider the regularity of weak solutions to the Navier-Stokes equations in $ \mathbb{R}^3$. Let $ u$ be a Leray-Hopf weak solution. It is proved that $ u$ becomes a regular solution if the pressure $ p \in L^1(0,T; \dot B^0_{\infty,\infty})$.


References [Enhancements On Off] (What's this?)

  • 1. J. Bergh and J. Löfstrom, Interpolation spaces, An Introduction, Springer-Verlag, New York, 1976. MR 0482275 (58:2349)
  • 2. L. C. Berselli and G. P. Galdi, Regularity criterion involving the pressure for the weak solutions to the Navier-Stokes equations, Proc. Amer. Math. Soc. 130(2002), 3585-3595. MR 1920038 (2003e:35240)
  • 3. D. Chae and J. Lee, Regularity criterion in terms of pressure for the Navier-Stokes equations, Nonlinear Anal. T. M.A. 46(2001), 727-735. MR 1857154 (2002g:76032)
  • 4. E. B. Fabes, B. F. Jones, and N. M. Riviere, The initial value problem for the Navier-Stokes equations with data in $ L^p$, Arch. Rational Mech. Anal. 45(1972), 222-240. MR 0316915 (47:5463)
  • 5. Y. Giga, Solutions for semilinear parabolic equations in $ L^p$ and regularity of weak solutions of the Navier-Stokes system, J. Differential Equations 62(1986), 186-212. MR 0833416 (87h:35157)
  • 6. E. Hopf, Ueber die Anfangswertaufgbe für die hydrodynamischen Grundgleichungen, Math. Nachr. 4(1951), 213-231. MR 0050423 (14:327b)
  • 7. H. Kozono and Y. Taniuchi, Bilinear estimates in BMO and the Navier-Stokes equations, Math. Z. 235(2000), 173-194. MR 1785078 (2001g:76011)
  • 8. H. Kozono, T. Ogawa, and Y. Taniuchi, The critical Sobolev inequalities in Besov spaces and regularity criterion to some semi-linear evolution equations, Math. Z. 242(2002), 251-278. MR 1980623 (2004c:35324)
  • 9. J. Leray, Sur le mouvement d'un liquids visqeux emplissant l'espace, Acta Math. 63(1934), 193-248.
  • 10. J. Serrin, On the interior regularity of weak solutions of the Navier-Stokes equations, Arch. Rational Mech. Anal. 9(1962), 187-195. MR 0136885 (25:346)
  • 11. J. Serrin, The initial value problem for the Navier-stokes equations, in Nonlinear problems (R. E. Langer Ed.), pp. 69-98, Univ. of Wisconsin Press, Madison, 1963. MR 0150444 (27:442)
  • 12. E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton University Press, Princeton, N.J., 1971. MR 0290095 (44:7280)
  • 13. E. M. Stein, Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals, Princeton University Press, Princeton, N.J., 1993. MR 1232192 (95c:42002)
  • 14. H. Sohr, Zur Reguläritatstheorie der instätionaren Gleichungen von Navier-Stokes, Math. Z. 184(1983), 359-375. MR 0716283 (85f:35167)
  • 15. M. Struwe, On partial regularity results for the Navier-Stokes equations, Comm. Pure Appl. Math. 41(1988), 437-458. MR 0933230 (89h:35270)
  • 16. S. Takahashi, On interior regularity criteria for weak solutions of the Navier-Stokes equations, Manuscripta Math. 69(1990), 237-254.MR 1078355 (91j:35225)
  • 17. H. Triebel, Theory of Function Spaces. Monograph in mathematics, Vol. 78, Birkhauser Verlag, Basel, 1983. MR 0781540 (86j:46026)
  • 18. Y. Zhou, On the regularity criteria in terms of pressure of the Navier-Stokes equations in $ \mathbb{R}^3$, Proc. Amer. Math. Soc. 134(2006), 149-156. MR 2170554

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 35Q30, 35B65, 76D03

Retrieve articles in all journals with MSC (2000): 35Q30, 35B65, 76D03


Additional Information

Chen Qionglei
Affiliation: Institute of Applied Physics and Computational Mathematics, P.O. Box 8009, Beijing 100088, People’s Republic of China
Email: chen_qionglei@iapcm.ac.cn

Zhang Zhifei
Affiliation: School of Mathematical Science, Peking University, Beijing 100871, People’s Republic of China
Email: zfzhang@math.pku.edu.cn

DOI: https://doi.org/10.1090/S0002-9939-06-08663-1
Received by editor(s): May 15, 2004
Received by editor(s) in revised form: February 7, 2006
Published electronically: December 29, 2006
Additional Notes: The second author is supported by National Natural Science Foundation of China (10601002)
Communicated by: David S. Tartakoff
Article copyright: © Copyright 2006 American Mathematical Society

American Mathematical Society