Operators that admit a moment sequence, II

Authors:
B. Chevreau, I. B. Jung, E. Ko and C. Pearcy

Journal:
Proc. Amer. Math. Soc. **135** (2007), 1763-1767

MSC (2000):
Primary 47A15, 44A60; Secondary 47B20

Published electronically:
November 7, 2006

MathSciNet review:
2286086

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: As the title indicates, this note is a continuation of a paper by Foias, Jung, Ko and Pearcy, in which it was shown that certain classes of operators on a Hilbert space admit moment sequences. Herein we extend these results.

**[1]**Aharon Atzmon and Gilles Godefroy,*An application of the smooth variational principle to the existence of nontrivial invariant subspaces*, C. R. Acad. Sci. Paris Sér. I Math.**332**(2001), no. 2, 151–156 (English, with English and French summaries). MR**1813773**, 10.1016/S0764-4442(00)01803-6**[2]**Constantin Apostol, Ciprian Foiaş, and Dan Voiculescu,*Some results on non-quasitriangular operators. II, III, IV, V*, Rev. Roumaine Math. Pures Appl.**18**(1973), 159–181;ibid. 18 (1973), 309–324; ibid. 18 (1973), 487–514; ibid. 18 (1973), 1133–1149. MR**0333785****[3]**L. G. Brown, R. G. Douglas, and P. A. Fillmore,*Extensions of 𝐶*-algebras and 𝐾-homology*, Ann. of Math. (2)**105**(1977), no. 2, 265–324. MR**0458196****[4]**C. A. Berger and B. I. Shaw,*Selfcommutators of multicyclic hyponormal operators are always trace class*, Bull. Amer. Math. Soc.**79**(1973), 1193–1199, (1974). MR**0374972**, 10.1090/S0002-9904-1973-13375-0**[5]**R. G. Douglas and Carl Pearcy,*A note on quasitriangular operators*, Duke Math. J.**37**(1970), 177–188. MR**0257790****[6]**V. Lomonosov,*Positive functionals on general operator algebras*, J. Math. Anal. Appl.**245**(2000), no. 1, 221–224. MR**1756586**, 10.1006/jmaa.2000.6763**[7]**Ciprian Foias, Il Bong Jung, Eungil Ko, and Carl Pearcy,*Operators that admit a moment sequence*, Israel J. Math.**145**(2005), 83–91. MR**2154721**, 10.1007/BF02786685**[8]**C. Foiaş, C. Pasnicu, and D. Voiculescu,*Weak limits of almost invariant projections*, J. Operator Theory**2**(1979), no. 1, 79–93. MR**553865****[9]**Dan Voiculescu,*A note on quasitriangularity and trace-class self-commutators*, Acta Sci. Math. (Szeged)**42**(1980), no. 1-2, 195–199. MR**576955**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (2000):
47A15,
44A60,
47B20

Retrieve articles in all journals with MSC (2000): 47A15, 44A60, 47B20

Additional Information

**B. Chevreau**

Affiliation:
UFR de Mathématiques et d’Informatique, Université de Bordeaux I, 351, Cours de la Libération, 33405 Talence, France

Email:
bernard.chevreau@math.u-bordeaux.fr

**I. B. Jung**

Affiliation:
Department of Mathematics, College of Natural Science, Kyungpook National University, Daegu 702-701, Korea

Email:
ibjung@knu.ac.kr

**E. Ko**

Affiliation:
Department of Mathematics, Ewha Women’s University, Seoul 120-750, Korea

Email:
eiko@ewha.ac.kr

**C. Pearcy**

Affiliation:
Department of Mathematics, Texas A&M University, College Station, Texas 77843

Email:
pearcy@math.tamu.edu

DOI:
https://doi.org/10.1090/S0002-9939-06-08667-9

Keywords:
Moment sequence,
invariant subspace,
hyponormal operator.

Received by editor(s):
January 9, 2006

Received by editor(s) in revised form:
January 31, 2006

Published electronically:
November 7, 2006

Additional Notes:
This work was supported by Korea Research Foundation Grant KRF-2002-070-C00006.

Communicated by:
N. Tomczak-Jaegermann

Article copyright:
© Copyright 2006
American Mathematical Society

The copyright for this article reverts to public domain 28 years after publication.