Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 

 

Inverse scattering transform for the Toda hierarchy with quasi-periodic background


Authors: Iryna Egorova, Johanna Michor and Gerald Teschl
Journal: Proc. Amer. Math. Soc. 135 (2007), 1817-1827
MSC (2000): Primary 37K15, 37K10; Secondary 47B36, 34L25
Published electronically: November 7, 2006
MathSciNet review: 2286092
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We provide a rigorous treatment of the inverse scattering transform for the entire Toda hierarchy in the case of a quasi-periodic finite-gap background solution.


References [Enhancements On Off] (What's this?)

  • 1. A. Boutet de Monvel and I. Egorova, The Toda lattice with step-like initial data. Soliton asymptotics, Inverse Problems 16 (2000), no. 4, 955–977. MR 1776477, 10.1088/0266-5611/16/4/306
  • 2. W. Bulla, F. Gesztesy, H. Holden, and G. Teschl, Algebro-geometric quasi-periodic finite-gap solutions of the Toda and Kac-van Moerbeke hierarchies, Mem. Amer. Math. Soc. 135 (1998), no. 641, x+79. MR 1432141, 10.1090/memo/0641
  • 3. I. Egorova, J. Michor, and G. Teschl, Scattering theory for Jacobi operators with quasi-periodic background, Comm. Math. Phys. 264-3, 811-842 (2006).
  • 4. L. D. Faddeev and L. A. Takhtajan, Hamiltonian methods in the theory of solitons, Springer Series in Soviet Mathematics, Springer-Verlag, Berlin, 1987. Translated from the Russian by A. G. Reyman [A. G. Reĭman]. MR 905674
  • 5. N. E. Firsova, Solution of the Cauchy problem for the Korteweg-de Vries equation with initial data that are the sum of a periodic and a rapidly decreasing function, Mat. Sb. (N.S.) 135(177) (1988), no. 2, 261–268, 272 (Russian); English transl., Math. USSR-Sb. 63 (1989), no. 1, 257–265. MR 937811
  • 6. H. Flaschka, On the Toda lattice. II. Inverse-scattering solution, Progr. Theoret. Phys. 51 (1974), 703–716. MR 0408648
  • 7. C. S. Gardner, J. M. Green, M. D. Kruskal, and R. M. Miura, A method for solving the Korteweg-de Vries equation, Phys. Rev. Letters 19, 1095-1097 (1967).
  • 8. E. A. Kuznetsov and A. V. Mikhaĭlov, Stability of stationary waves in nonlinear weakly dispersive media, Ž. Èksper. Teoret. Fiz. 67 (1974), no. 5, 1717–1727 (Russian, with English summary); English transl., Soviet Physics JETP 40 (1974), no. 5, 855–859. MR 0387847
  • 9. Peter D. Lax, Integrals of nonlinear equations of evolution and solitary waves, Comm. Pure Appl. Math. 21 (1968), 467–490. MR 0235310
  • 10. Vladimir A. Marchenko, Sturm-Liouville operators and applications, Operator Theory: Advances and Applications, vol. 22, Birkhäuser Verlag, Basel, 1986. Translated from the Russian by A. Iacob. MR 897106
  • 11. J. Michor and G. Teschl, Trace formulas for Jacobi operators in connection with scattering theory for quasi-periodic background, Proc. Operator Theory and Applications in Mathematical Physics 2004, J. Janas, et al. (eds.), Oper. Theory Adv. Appl., Birkhäuser, Basel (to appear).
  • 12. Gerald Teschl, Inverse scattering transform for the Toda hierarchy, Math. Nachr. 202 (1999), 163–171. MR 1694723, 10.1002/mana.19992020113
  • 13. Gerald Teschl, On the Toda and Kac-van Moerbeke hierarchies, Math. Z. 231 (1999), no. 2, 325–344. MR 1703351, 10.1007/PL00004732
  • 14. Gerald Teschl, Jacobi operators and completely integrable nonlinear lattices, Mathematical Surveys and Monographs, vol. 72, American Mathematical Society, Providence, RI, 2000. MR 1711536
  • 15. Morikazu Toda, Theory of nonlinear lattices, 2nd ed., Springer Series in Solid-State Sciences, vol. 20, Springer-Verlag, Berlin, 1989. MR 971987
  • 16. A. Volberg and P. Yuditskii, On the inverse scattering problem for Jacobi matrices with the spectrum on an interval, a finite system of intervals or a Cantor set of positive length, Comm. Math. Phys. 226 (2002), no. 3, 567–605. MR 1896882, 10.1007/s002200200623

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 37K15, 37K10, 47B36, 34L25

Retrieve articles in all journals with MSC (2000): 37K15, 37K10, 47B36, 34L25


Additional Information

Iryna Egorova
Affiliation: Kharkiv National University, 47 Lenin ave, 61164 Kharkiv, Ukraine
Email: egorova@ilt.kharkov.ua

Johanna Michor
Affiliation: Faculty of Mathematics, Nordbergstrasse 15, 1090 Wien, Austria – and – International Erwin Schrödinger Institute for Mathematical Physics, Boltzmanngasse 9, 1090 Wien, Austria
Email: Johanna.Michor@esi.ac.at

Gerald Teschl
Affiliation: Faculty of Mathematics, Nordbergstrasse 15, 1090 Wien, Austria – and – International Erwin Schrödinger Institute for Mathematical Physics, Boltzmanngasse 9, 1090 Wien, Austria
Email: Gerald.Teschl@univie.ac.at

DOI: http://dx.doi.org/10.1090/S0002-9939-06-08668-0
Keywords: Inverse scattering, Toda hierarchy, periodic
Received by editor(s): December 1, 2005
Received by editor(s) in revised form: February 7, 2006
Published electronically: November 7, 2006
Additional Notes: This work was supported by the Austrian Science Fund (FWF) under Grant No. P17762 and INTAS Research Network NeCCA 03-51-6637.
Communicated by: Joseph A. Ball
Article copyright: © Copyright 2006 American Mathematical Society