Polynomial recurrences and cyclic resultants

Authors:
Christopher J. Hillar and Lionel Levine

Journal:
Proc. Amer. Math. Soc. **135** (2007), 1607-1618

MSC (2000):
Primary 11B37, 14Q99; Secondary 15A15, 20M25

Published electronically:
December 29, 2006

MathSciNet review:
2286068

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let be an algebraically closed field of characteristic zero and let . The -th *cyclic resultant* of is

**1.**John H. Conway and Richard K. Guy,*The book of numbers*, Copernicus, New York, 1996. MR**1411676****2.**David Cox, John Little, and Donal O’Shea,*Ideals, varieties, and algorithms*, 2nd ed., Undergraduate Texts in Mathematics, Springer-Verlag, New York, 1997. An introduction to computational algebraic geometry and commutative algebra. MR**1417938****3.**J. J. Duistermaat and V. W. Guillemin,*The spectrum of positive elliptic operators and periodic bicharacteristics*, Invent. Math.**29**(1975), no. 1, 39–79. MR**0405514****4.**Saber N. Elaydi,*An introduction to difference equations*, 2nd ed., Undergraduate Texts in Mathematics, Springer-Verlag, New York, 1999. MR**1711587****5.**Graham Everest and Thomas Ward,*Heights of polynomials and entropy in algebraic dynamics*, Universitext, Springer-Verlag London, Ltd., London, 1999. MR**1700272****6.**David Fried,*Cyclic resultants of reciprocal polynomials*, Holomorphic dynamics (Mexico, 1986) Lecture Notes in Math., vol. 1345, Springer, Berlin, 1988, pp. 124–128. MR**980956**, 10.1007/BFb0081399**7.**Victor Guillemin,*Wave-trace invariants*, Duke Math. J.**83**(1996), no. 2, 287–352. MR**1390650**, 10.1215/S0012-7094-96-08311-8**8.**Christopher J. Hillar,*Cyclic resultants*, J. Symbolic Comput.**39**(2005), no. 6, 653–669. MR**2167674**, 10.1016/j.jsc.2005.01.001**9.**A. Iantchenko, J. Sjöstrand, and M. Zworski,*Birkhoff normal forms in semi-classical inverse problems*, Math. Res. Lett.**9**(2002), no. 2-3, 337–362. MR**1909649**, 10.4310/MRL.2002.v9.n3.a9**10.**Kiran S. Kedlaya,*Quantum computation of zeta functions of curves*, Comput. Complexity**15**(2006), no. 1, 1–19. MR**2226067**, 10.1007/s00037-006-0204-7**11.**C. Krattenthaler,*Advanced determinant calculus*, Sém. Lothar. Combin.**42**(1999), Art. B42q, 67 pp. (electronic). The Andrews Festschrift (Maratea, 1998). MR**1701596****12.**Ezra Miller and Bernd Sturmfels,*Combinatorial commutative algebra*, Graduate Texts in Mathematics, vol. 227, Springer-Verlag, New York, 2005. MR**2110098****13.**K. Purbhoo,*A Nullstellensatz For Amoebas*, preprint.**14.**W. H. Stevens,*Recursion formulas for some abelian knot invariants*, Journal of Knot Theory and Its Ramifications, Vol. 9, No. 3 (2000) 413-422.**15.**D. Zeilberger,*Dodgson's determinant-evaluation rule proved by two-timing men and women*, Elec. J. Comb. 4(2), 1997.

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (2000):
11B37,
14Q99,
15A15,
20M25

Retrieve articles in all journals with MSC (2000): 11B37, 14Q99, 15A15, 20M25

Additional Information

**Christopher J. Hillar**

Affiliation:
Department of Mathematics, Texas A & M University, College Station, TX 77843

Email:
chillar@math.tamu.edu

**Lionel Levine**

Affiliation:
Department of Mathematics, University of California, Berkeley, California 94720

Email:
levine@math.berkeley.edu

DOI:
https://doi.org/10.1090/S0002-9939-06-08672-2

Keywords:
Cyclic resultants,
linear recurrence,
polynomial recurrence,
semigroup algebra,
Toeplitz determinant,
topological dynamics,
Vandermonde determinant

Received by editor(s):
November 23, 2004

Received by editor(s) in revised form:
February 8, 2006

Published electronically:
December 29, 2006

Additional Notes:
Both authors were supported under a NSF Graduate Research Fellowship.

Communicated by:
Bernd Ulrich

Article copyright:
© Copyright 2006
American Mathematical Society