Hankel operators with unbounded symbols

Authors:
P. Ahern and E. H. Youssfi

Journal:
Proc. Amer. Math. Soc. **135** (2007), 1865-1873

MSC (2000):
Primary 47B35, 32A35, 32A25

Published electronically:
November 7, 2006

MathSciNet review:
2286098

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We prove that there are holomorphic functions in the Hardy space of the unit ball or the bidisc such that the big Hankel operator with symbol is bounded and for any holomorphic function the function cannot be bounded.

**[BT]**Mihály Bakonyi and Dan Timotin,*On a conjecture of Cotlar and Sadosky on multidimensional Hankel operators*, C. R. Acad. Sci. Paris Sér. I Math.**325**(1997), no. 10, 1071–1075 (English, with English and French summaries). MR**1614007**, 10.1016/S0764-4442(97)88707-1**[C]**L. A. Coburn,*Toeplitz operators, quantum mechanics, and mean oscillation in the Bergman metric*, Operator theory: operator algebras and applications, Part 1 (Durham, NH, 1988) Proc. Sympos. Pure Math., vol. 51, Amer. Math. Soc., Providence, RI, 1990, pp. 97–104. MR**1077380****[CS]**Mischa Cotlar and Cora Sadosky,*Two distinguished subspaces of product BMO and Nehari-AAK theory for Hankel operators on the torus*, Integral Equations Operator Theory**26**(1996), no. 3, 273–304. MR**1415032**, 10.1007/BF01306544**[FS]**Sarah H. Ferguson and Cora Sadosky,*Characterizations of bounded mean oscillation on the polydisk in terms of Hankel operators and Carleson measures*, J. Anal. Math.**81**(2000), 239–267. MR**1785283**, 10.1007/BF02788991**[J]**Stefan Jakobsson,*The harmonic Bergman kernel and the Friedrichs operator*, Ark. Mat.**40**(2002), no. 1, 89–104. MR**1948888**, 10.1007/BF02384504**[S]**E. Strouse,*Conference in Holomorphic Function Spaces and their Operators*, CIRM Marseille, 2002.**[Z1]**Ke He Zhu,*Operator theory in function spaces*, Monographs and Textbooks in Pure and Applied Mathematics, vol. 139, Marcel Dekker, Inc., New York, 1990. MR**1074007****[Z2]**Kehe Zhu,*Spaces of holomorphic functions in the unit ball*, Graduate Texts in Mathematics, vol. 226, Springer-Verlag, New York, 2005. MR**2115155**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (2000):
47B35,
32A35,
32A25

Retrieve articles in all journals with MSC (2000): 47B35, 32A35, 32A25

Additional Information

**P. Ahern**

Affiliation:
Department of Mathematics, University of Wisconsin, 480 Lincoln Drive, Madison, Wisconsin 53705

Email:
ahern@math.wisc.edu

**E. H. Youssfi**

Affiliation:
LATP, U.M.R. C.N.R.S. 6632, CMI, Université de Provence, 39 Rue F-Joliot-Curie, 13453 Marseille Cedex 13, France

Email:
youssfi@gyptis.univ-mrs.fr

DOI:
http://dx.doi.org/10.1090/S0002-9939-06-08675-8

Received by editor(s):
November 24, 2005

Received by editor(s) in revised form:
February 16, 2006

Published electronically:
November 7, 2006

Communicated by:
Joseph A. Ball

Article copyright:
© Copyright 2006
American Mathematical Society