Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

The Schrödinger equation with a moving point interaction in three dimensions


Author: Andrea Posilicano
Journal: Proc. Amer. Math. Soc. 135 (2007), 1785-1793
MSC (2000): Primary 47B25, 47D08; Secondary 47D06, 81Q10
DOI: https://doi.org/10.1090/S0002-9939-06-08814-9
Published electronically: December 27, 2006
MathSciNet review: 2286089
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In the case of a single point interaction we improve, by using different methods, the existence theorem for the unitary evolution generated by a Schrödinger operator with moving point interactions obtained by Dell'Antonio, Figari and Teta.


References [Enhancements On Off] (What's this?)

  • 1. Albeverio, S., Gesztesy, F., Hoegh-Krohn, R., Holden, H.: Solvable Models in Quantum Mechanics. Second edition. AMS Chelsea Publishing, Providence, RI, 2005 MR 2105735 (2005g:81001)
  • 2. Dell'Antonio, G.F., Figari, R., Teta, A.: The Schrödinger equation with moving point interactions in three dimensions. Stochastic processes, physics and geometry: new interplays, I (Leipzig, 1999), 99-113, CMS Conf. Proc. 28, Amer. Math. Soc., Providence, RI, 2000 MR 1803381 (2002g:81028)
  • 3. Kato, T.: Linear evolution equations of ``hyperbolic'' type. J. Fac. Sci. Univ. Tokyo 27 (1970), 241-258 MR 0279626 (43:5347)
  • 4. Kisynski, J.: Sur les opérateurs de Green des problèmes de Cauchy abstraits. Studia Math. 23 (1963/1964), 285-328 MR 0161185 (28:4393)
  • 5. Ortner, N.: Regularisierte Faltung von Distributionen. II. Eine Tabelle von Fundamentallösungen. Z. Angew. Math. Phys. 31 (1980), 155-173 MR 0576537 (82e:46058b)
  • 6. Pazy, A.: Semigroups of Linear Operators and Applications to Partial Differential Equations. Springer, New York, 1983 MR 0710486 (85g:47061)
  • 7. Posilicano, A.: A Kre{\u{\i\/}}\kern.15emn-like formula for singular perturbations of self-adjoint operators and applications. J. Funct. Anal. 183 (2001), 109-147 MR 1837534 (2002m:47018)
  • 8. Simon, B.: Quantum Mechanics for Hamiltonians Defined as Quadratic Forms. Princeton University Press, Princeton, N. J., 1971 MR 0455975 (56:14207)
  • 9. Teta, A.: Quadratic forms for singular perturbations of the Laplacian. Publ. RIMS, Kyoto Univ. 26 (1990), 803-817 MR 1082317 (92g:35027)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 47B25, 47D08, 47D06, 81Q10

Retrieve articles in all journals with MSC (2000): 47B25, 47D08, 47D06, 81Q10


Additional Information

Andrea Posilicano
Affiliation: Dipartimento di Fisica e Matematica, Università dell’Insubria, I-22100 Como, Italy
Email: posilicano@uninsubria.it

DOI: https://doi.org/10.1090/S0002-9939-06-08814-9
Keywords: Point interactions, singular perturbations, unitary propagators.
Received by editor(s): February 3, 2006
Published electronically: December 27, 2006
Communicated by: David S. Tartakoff
Article copyright: © Copyright 2006 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society