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ON THE REGULARITY OF PRODUCTS AND INTERSECTIONS
OF COMPLETE INTERSECTIONS

MARC CHARDIN, NGUYEN CONG MINH, AND NGO VIET TRUNG

(Communicated by Michael Stillman)

Abstract. This paper proves the formulae

reg(IJ) ≤ reg(I) + reg(J),

reg(I ∩ J) ≤ reg(I) + reg(J)

for arbitrary monomial complete intersections I and J , and provides examples
showing that these inequalities do not hold for general complete intersections.

1. Introduction

Let S be a polynomial ring over a field k. For a finitely generated graded S-
module M let

ai(M) := max{µ | Hi
m(M)µ �= 0}

if Hi
m(M) �= 0 and ai(M) := −∞ otherwise, where Hi

m(M) denotes the ith local
cohomology module of M with respect to the graded maximal ideal m of S. Then
the Castelnuovo-Mumford regularity (or regularity for short) of M is defined as the
invariant

reg(M) := max
i

{ai(M) + i}.
It is of great interest to have good bounds for the regularity [BaM].

The regularity of products of ideals was first studied by Conca and Herzog [CoH].
They found some special classes of ideals I and J for which the following formula
holds:

reg(IJ) ≤ reg(I) + reg(J)
(see also [Si]). In particular, they showed that reg(I1 · · · Id) = d for any set of ideals
I1, . . . , Id generated by linear forms. These results led them to raise the question
whether the formula

reg(I1 · · · Id) ≤ reg(I1) + · · · + reg(Id)

holds for any set of complete intersections I1, . . . , Id [CoH, Question 3.6]. Note that
this formula does not hold for arbitrary monomial ideals. For instance, Terai and
Sturmfels (see [St]) gave examples of monomial ideals I such that reg(I2) > 2 reg(I).

On the other hand, Sturmfels conjectured that reg(I1 ∩ · · · ∩ Id) ≤ d for any set
of ideals I1, . . . , Id generated by linear forms. This conjecture was settled in the
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affirmative by Derksen and Sidman [DS]. Their proof was inspired by the work of
Conca and Herzog. So one might be tempted to ask whether the formula

reg(I1 ∩ · · · ∩ Id) ≤ reg(I1) + · · · + reg(Id)

holds for any set of complete intersections I1, . . . , Id.
The following result shows that these questions have positive answers in the

monomial case and we shall see that there are counter-examples in the general
case.

Theorem 1.1. Let I and J be two arbitrary monomial complete intersections.
Then reg(IJ) ≤ reg(I) + reg(J),

reg(I ∩ J) ≤ reg(I) + reg(J).

Both formulae follow from a more general bound for the regularity of a larger
class of ideals constructed from I and J (Theorem 3.1). The proof is a bit intricate.
It is based on a bound for the regularity of a monomial ideal in terms of the degree
of the least common multiple of the monomial generators and the height of the
given ideal.

We are not able to extend the first formula to more than two monomial complete
intersections. But we find another proof which extends the second formula to any
finite set of monomial complete intersections (Theorem 3.3). We would like to
mention that the first formula was already proved in the case where one of the
ideals I, J is generated by two elements by combinatorial methods in [M].

In the last section, we give a geometric approach for constructing examples of
complete intersection ideals for which the inequalities reg(IJ) ≤ reg(I) + reg(J)
and/or reg(I ∩ J) ≤ reg(I) + reg(J) fail. We show for instance the following.

Theorem 1.2. Let Y in P
3 be a curve which is defined by at most 4 equations at

the generic points of its irreducible components. Consider 4 elements f1, f2, f3, f4

in IY such that I := (f1, f2) and J := (f3, f4) are complete intersection ideals and
IY is the unmixed part of I +J . Assume that ε := min{µ | H0(Y,OY (µ)) �= 0} < 0.
Then

reg(IJ) = reg(I) + reg(J) − ε − 1.

A similar construction is explained for I ∩ J . As a consequence, many families
of curves with sections in negative degrees give rise to counter-examples for the
considered inequalities. In the examples we give, I is a monomial ideal and J is
either generated by one binomial or by one monomial and one binomial.

2. Preliminaries

Let us first introduce some conventions. For any monomial ideal we can always
find a minimal basis consisting of monomials. These monomials will be called the
monomial generators of the given ideal. Moreover, for a finite set of monomials
Ai = xai1

1 · · ·xain
n , we call the monomial x

maxi{ai1}
1 · · ·xmaxi{ain}

n the least common
multiple of the monomials Ai.

The key point of our approach is the following bound for the regularity of arbi-
trary monomial ideals.
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Lemma 2.1 ([HT, Lemma 3.1]). Let I be a monomial ideal. Let F denote the least
common multiple of the monomial generators of I. Then

reg(I) ≤ deg F − ht(I) + 1.

This bound is an improvement of the bound reg(I) ≤ deg F − 1 given by Bruns
and Herzog in [BrH, Theorem 3.1(a)].

If we apply Lemma 2.1 to the product and the intersection of monomial ideals,
we get

reg(I1 · · · Id) ≤
d∑

j=1

deg Fj − ht(I1 · · · Id) + 1,

reg(I1 ∩ · · · ∩ Id) ≤
d∑

j=1

deg Fj − ht(I1 ∩ · · · ∩ Id) + 1,

where Fj denotes the least common multiple of the monomial generators of Ij . If
I1, . . . , Id are complete intersections, then reg(Ij) = deg Fj − ht(Ij) + 1, whence

reg(I1 · · · Id) ≤
d∑

j=1

reg(Ij) +
d∑

j=1

ht(Ij) − ht(I1 · · · Id) − d + 1,

reg(I1 ∩ · · · ∩ Id) ≤
d∑

j=1

reg(Ij) +
d∑

j=1

ht(Ij) − ht(I1 ∩ · · · ∩ Id) − d + 1.

These bounds are worse than the bounds in the aforementioned questions. However,
the difference is not so great.

To get rid of the difference in the case d = 2 we need the following consequence
of Lemma 2.1.

Corollary 2.2. Let I be a monomial complete intersection and Q an arbitrary
monomial ideal (not necessarily a proper ideal of the polynomial ring S). Then

reg(I : Q) ≤ reg(I).

Proof. Let F denote the product of the monomial generators of I. Since every
monomial generator of I : Q divides a monomial generator of I, the least common
multiple of the monomial generators of I : Q divides F . Applying Lemma 2.1 we
get

reg(I : Q) ≤ deg F − ht(I : Q) + 1 ≤ deg F − ht I + 1 = reg(I).

�

We will decompose the product and the intersection of two monomial ideals as
a sum of smaller ideals and apply the following lemma to estimate the regularity.

Lemma 2.3. Let I and J be two arbitrary homogeneous ideals. Then

reg(I + J) ≤ max{reg(I), reg(J), reg(I ∩ J) − 1},
reg(I ∩ J) ≤ max{reg(I), reg(J), reg(I + J) + 1}.

Moreover, reg(I ∩ J) = reg(I + J) + 1 if reg(I + J) > max{reg(I), reg(J)} or if
reg(I ∩ J) > max{reg(I), reg(J)} + 1.
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Proof. The statements follow from the exact sequence

0 −→ I ∩ J −→ I ⊕ J −→ I + J −→ 0

and the well-known relationship between regularities of modules of an exact se-
quence (see e.g. [E, Corollary 20.19]). �

3. Main results

We will prove the following general result.

Theorem 3.1. Let I and J be two arbitrary monomial complete intersections. Let
f1, . . . , fr be the monomial generators of I. Let Q1, . . . , Qr be arbitrary monomial
ideals. Then

reg
(
f1(J : Q1) + · · · + fr(J : Qr)

)
≤ reg(I) + reg(J).

The formulae of Theorem 1.1 follow from the above result because

IJ = f1J + · · · + frJ = f1(J : S) + · · · + fr(J : S),

I ∩ J = (f1) ∩ J + · · · + (fr) ∩ J = f1(J : f1) + · · · + fr(J : fr).

Proof. If r = 1, we have to prove that

reg
(
f1(J : Q1)

)
≤ deg f1 + reg(J).

It is obvious that

reg
(
f1(J : Q1)

)
≤ deg f1 + reg(J : Q1).

By Corollary 2.2 we have reg(J : Q1) ≤ reg(J), which implies the assertion.
If r > 1, using induction we may assume that

reg
( r−1∑

i=1

fi(J : Qi)
)
≤ reg(f1, . . . , fr−1) + reg(J),(1)

reg
(
fr(J : Qr)

)
≤ deg fr + reg(J).(2)

Since f1(J : Q1), . . . , fr−1(J : Qr−1) are monomial ideals, we have

( r−1∑
i=1

fi(J : Qi)
)

: fr =
r−1∑
i=1

(
fi(J : Qi) : fr

)
.

Since f1, . . . , fr is a regular sequence, fi(J : Qi) : fr = fi(J : frQi). Therefore,

( r−1∑
i=1

fi(J : Qi)
)
∩ fr(J : Qr) = fr

[( r−1∑
i=1

fi(J : Qi) : fr

)
∩ (J : Qr)

]

= fr

[( r−1∑
i=1

fi(J : frQi)
)
∩ (J : Qr)

]

= fr

[ r−1∑
i=1

fi

(
(J : frQi) ∩ (J : fiQr)

)]

= fr

[ r−1∑
i=1

fi

(
J : (frQi + fiQr)

)]
.
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From this it follows that

reg
(( r−1∑

i=1

fi(J : Qi)
)
∩ fr(J : Qr)

)
≤ deg fr + reg

( r−1∑
i=1

fi

(
J : (frQi + fiQr)

))
.

Using induction we may assume that

reg
( r−1∑

i=1

fi

(
J : (frQi + fiQr)

))
≤ reg(f1, . . . , fr−1) + reg(J).

Since reg(I) = reg(f1, . . . , fr−1) + deg fr − 1, this implies

reg
(( r−1∑

i=1

fi(J : Qi)
)
∩ fr(J : Qr)

)
≤ reg(I) + reg(J) + 1.(3)

Now, we apply Lemma 2.3 to the decomposition

f1(J : Q1) + · · · + fr(J : Qr) =
( r−1∑

i=1

fi(J : Qi)
)

+ fr(J : Qr)

and obtain

reg
(
f1(J : Q1) + · · · + fr(J : Qr)

)
≤ max

{
reg

( r−1∑
i=1

fi(J : Qi)
)

,

reg
(
fr(J : Qr)

)
, reg

(( r−1∑
i=1

fi(J : Qi)
)
∩ fr(J : Qr)

)
− 1

}

≤ reg(I) + reg(J)

by using (1), (2), (3). �

Remark 3.2. The above proof would work in the case of more than two monomial
complete intersections if we could prove a similar result to that in Corollary 2.2.
For instance, if we can prove

reg(IJ : Q) ≤ reg(I) + reg(J)

for two monomial complete intersections I, J and an arbitrary monomial ideal Q,
then we can give a positive answer to the question of Conca and Herzog in the
monomial case for d = 3. We are unable to verify the above formula, although
computations in concrete cases suggest its validity.

Now we will extend the second formula of Theorem 1.1 for any set of monomial
complete intersections.

Theorem 3.3. Let I1, . . . , Id be arbitrary monomial complete intersections. Then

reg(I1 ∩ · · · ∩ Id) ≤ reg(I1) + · · · + reg(Id).

Proof. We will use induction on the number n of variables and the sum

s := reg(I1) + · · · + reg(Id).

First, we note that the cases n = 1 and s = 1 are trivial.
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Assume that n ≥ 2 and s ≥ 2. Let x be an arbitrary variable of the polynomial
ring S. It is easy to see that (I1, x), . . . , (Id, x) are monomial complete intersections
and

(I1 ∩ · · · ∩ Id, x) = (I1, x) ∩ · · · ∩ (Id, x).
Therefore, using induction on n we may assume that

reg(I1 ∩ · · · ∩ Id, x) ≤ reg(I1, x) + · · · + reg(Id, x).

If x is a non-zerodivisor on I1 ∩ · · · ∩ Id and if we assume that the intersection
is irredundant, then Ij : x = Ij and hence reg(Ij , x) = reg(Ij) for all j = 1, . . . , d.
In this case,

reg(I1 ∩ · · · ∩ Id) = reg(I1 ∩ · · · ∩ Id, x) ≤ reg(I1) + · · · + reg(Id).

If x is a zerodivisor on I1 ∩ · · · ∩ Id, we involve the ideal

(I1 ∩ · · · ∩ Id) : x = (I1 : x) ∩ · · · ∩ (Id : x).

If Ij : x �= Ij , either Ij : x = S (x ∈ Ij : x) or Ij : x is a monomial complete
intersection generated by the monomials obtained from the generators of Ij by
replacing the monomial divisible by x by its quotient by x. In the latter case,
we have reg(Ij : x) = reg(Ij) − 1. Since there exists at least one ideal Ij with
Ij : x �= Ij , the ideal (I1 ∩ · · · ∩ Id) : x is an intersection of monomial complete
intersections such that the sum of their regularities is less than s. Using induction
on s we may assume that

reg((I1 ∩ · · · ∩ Id) : x) ≤ reg(I1 : x) + · · · + reg(Id : x)

≤ reg(I1) + · · · + reg(Id) − 1.

Now, from the exact sequence

0 −→ S/(I1 ∩ · · · ∩ Id) : x
x−→ S/I1 ∩ · · · ∩ Id −→ S/(I1 ∩ · · · ∩ Id, x) −→ 0

we can deduce that

reg(I1 ∩ · · · ∩ Id) ≤ max {reg((I1 ∩ · · · ∩ Id) : x) + 1, reg(I1 ∩ · · · ∩ Id, x)}
≤ reg(I1) + · · · + reg(Id).

�

4. Counter-examples

From now on we set S := k[x, y, z, t] for the homogeneous coordinate ring of P
3.

First, we will use the theory of liaison to give curves in P
3 with sections in negative

degrees. Recall that two curves X and Y in P
3 are said to be directly linked by a

complete intersection Z if IX = IZ : IY , or equivalently IY = IZ : IX .
For any curve Y we define

ε(Y ) := min{µ | H0(Y,OY (µ)) �= 0}.
Note that if we denote the initial degree of a module M by indeg(M) with the
convention indeg(0) = +∞, then

ε(Y ) = min{0, indeg(H1
m(S/IY ))}.

Lemma 4.1. Let X and Y be two curves in P
3, directly linked by a complete

intersection Z. Then, reg(S/IX) ≥ reg(S/IZ) if and only if ε(Y ) < 0. In this case,

reg(S/IX) = reg(S/IZ) − ε(Y ) − 1.
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Proof. Put r := reg(S/IZ). Then a2(S/IX) ≤ a2(S/IZ) = r−2 because X is strictly
contained in Z. Hence reg(S/IX) ≥ r if and only if a1(S/IX) + 1 ≥ r. In this case,
reg(S/IX) = a1(S/IX) + 1, By liaison,

H1
m(S/IX)µ 	 H1

m(S/IY )r−µ−2.

Therefore, a1(S/IX) = r − indeg(H1
m(S/IY ))− 2. Thus, reg(S/IX) ≥ r if and only

if indeg(H1
m(S/IY )) < 0. In this case, reg(S/IX) = r − indeg(H1

m(S/IY )) − 1. �

For instance, we may take for X a reduced irreducible curve whose regularity is
at least equal to the sum of the two smallest degrees d1, d2 of the minimal generators
of its defining ideal. By Lemma 4.1, the residual of X in the complete intersection
of degrees d1, d2 is a nonreduced curve Y with

ε(Y ) = d1 + d2 − reg(IX) − 2 < 0.

We will use curves with sections in negative degrees to construct complete inter-
section ideals I, J for which reg(I ∩ J) or reg(IJ) is greater than reg(I) + reg(J).
The construction is based on the following theorems.

Theorem 4.2. Let Y be a curve in P
3 with ε(Y ) < 0 which is defined by at most 3

equations at the generic points of its irreducible components. Consider 3 elements
f1, f2, f3 in IY such that IY is the unmixed part of (f1, f2, f3) and f1, f2 is a regular
sequence. Put I = (f1, f2) and J = (f3). Then

reg(I ∩ J) = reg(I) + reg(J) − ε(Y ) − 1.

Proof. Let K = (f1, f2, f3) and σ = deg f1 + deg f2 + deg f3. By [Ch, 0.6] we have

a0(S/K) = σ − ε(Y ) − 4,
a1(S/K) = σ − indeg(IY /K) − 4,
a2(S/K)≤ σ − indeg(K) − 5.

Since ε(Y ) < 0, a0(S/K) ≥ ai(S/K) + i for i = 1, 2. Therefore,

reg(S/K) = a0(S/K) = σ − ε(Y ) − 4.

Applying Lemma 2.3 we get

reg(I ∩ J) = reg(K) + 1 = σ − ε(Y ) − 2 = reg(I) + reg(J) − ε(Y ) − 1.

�

Theorem 4.3. Let Y be a curve in P
3 with ε(Y ) < 0 which is defined by at most 4

equations at the generic points of its irreducible components. Consider 4 elements
f1, f2, f3, f4 in IY such that I := (f1, f2) and J := (f3, f4) are complete intersection
ideals and IY is the unmixed part of I + J . Then

reg(IJ) = reg(I) + reg(J) − ε(Y ) − 1.

Proof. Consider the exact sequence

0 → (I ∩ J)/IJ → S/IJ → S/(I ∩ J) → 0.

As TorS
1 (S/I, S/J) 	 (I ∩ J)/IJ and depth(S/(I ∩ J)) > 0 one has

H0
m(S/IJ) 	 H0

m(TorS
1 (S/I, S/J)).
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Put σ = deg f1 + deg f2 + deg f3 + deg f4. By [Ch, 5.9], H0
m(TorS

1 (S/I, S/J)) is
the graded k-dual of H1

m(S/IY ) up to a shift in degrees by σ − 4. Therefore,
H0

m(S/IJ)µ 	 H1
m(S/IY )σ−4−µ. This implies

a0(S/IJ) = σ − indeg(H1
m(S/IY )) − 4 = σ − ε(Y ) − 4.

Modifying the generators of I and J , we may assume that f1f3, f2f4 is a regular
sequence, which shows that

a2(S/IJ) ≤ a2(S/(f1f3, f2f4)) − 1 = σ − 5.

By [Ch, 3.1 (iii)] one has H1
m((I∩J)/IJ)µ = 0 for µ > σ−4. Therefore, if µ > σ−4,

one has an exact sequence

0 −→ H1
m(S/IJ)µ −→ H1

m(S/I ∩ J)µ −→ H2
m((I ∩ J)/IJ)µ −→ 0.

By [Ch, 3.1 (ii)], H2
m((I ∩ J)/IJ)µ 	 H0

m(S/I + J)µ for µ > σ − 4. Since S/I and
S/J are Cohen-Macaulay rings, using the exact sequence

0 −→ S/I ∩ J −→ S/I ⊕ S/J −→ S/I + J −→ 0

we also have H1
m(S/I ∩ J)µ 	 H0

m(S/I + J)µ. Therefore, H1
m(S/IJ)µ = 0 for

µ > σ − 4. Hence
a1(S/IJ) ≤ σ − 4.

As ε(Y ) < 0, ai(S/IJ) + i ≤ a0(S/IJ) for i = 1, 2. So we get

reg(IJ) = a0(S/IJ) + 1 = σ − ε(Y ) − 4 = reg(I) + reg(J) − ε(Y ) − 1.

�

We will now study a specific class of curves with sections in negative degrees.
Consider first a monomial curve C parameterized by (1 : θ : θmn : θm(n+1))

for m, n ≥ 2. Note that reg(IC) = mn by [BCFH, Corollary 5.1]. Let X be the
union of C and the line {x = z = 0}. On one hand, reg(IX) ≥ mn + 1 because
xymn − xmnz is a minimal generator of IX = IC ∩ (x, z). On the other hand, it is
easy to check that

IC + (x, z) = (x, z, ymtn−1, y2mtn−2, . . . , ynm)

and hence reg(IC + (x, z)) = mn. By Lemma 2.3, this implies reg(IX) ≤ reg(IC) +
1 = mn + 1 (one can also use [Si, 1.8] to show reg(IX) ≤ mn + 1). Therefore,
reg(IX) = mn + 1.

Let Y be the direct link of X by the complete intersection defined by the ideal
(xmt − ymz, zn+1 − xtn). By Lemma 4.1,

ε(Y ) = (m + 1) + (n + 1) − reg(IX) − 2 = −(m − 1)(n − 1).

One has IY = (xmt− ymz) + (z, t)n. To prove this note that (xmt− ymz) + (z, t)n

defines a locally complete intersection scheme supported on the line z = t = 0, has
positive depth and degree (or multiplicity) at least n. Then the containment

IZ = IX ∩ IY ⊆ IX ∩ ((xmt − ymz) + (z, t)n)

and the fact that

deg(IZ) = (m + 1)(n + 1) = deg(IX) + n

forces IY to coincide with the unmixed ideal (xmt − ymz) + (z, t)n. It is also easy
to provide a minimal free S-resolution of the ideal (xmt− ymz) + (z, t)n, and show
these facts along the same line as in the proof of [CD, 2.4].
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The above curve Y can be used to construct counter-examples to the inequalities
raised in the introduction.

Example 4.4. Let I = (tn, zn) and J = (xmt − ymz). It is easy to check that
IY = (xmt − ymz) + (z, t)n is the saturation of (tn, zn, xmt − ymz). Therefore, we
may apply Theorem 4.2 and obtain

reg(I ∩ J) = reg(I) + reg(J) + (m − 1)(n − 1) − 1.

Thus, reg(I ∩ J) > reg(I) + reg(J) if and only if mn > m + n or equivalently
(m, n) �= (2, 2).

Example 4.5. Let I = (tn, zn) and J = (xmt−ymz, tn). Then IY is the saturation
of I + J . By Theorem 4.3 we have

reg(IJ) = reg(I) + reg(J) + (m − 1)(n − 1) − 1.

Therefore, reg(IJ) > reg(I) + reg(J) if and only if (m, n) �= (2, 2).
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