MODEL THEORY OF PARTIAL DIFFERENTIAL FIELDS:
FROM COMMUTING TO NONCOMMUTING DERIVATIONS

MICHAEL F. SINGER

(Communicated by Julia Knight)

Abstract. McGrail (2000) has shown the existence of a model completion for
the universal theory of fields on which a finite number of commuting deriva-
tions act and, independently, Yaffe (2001) has shown the existence of a model
completion for the universal theory of fields on which a fixed Lie algebra acts
as derivations. We show how to derive the second result from the first.

1. Introduction

In [3], McGrail gives axioms for the model completion of the universal theory
of fields of characteristic zero with several commuting derivations. Independently,
Yaffe [7] gave axioms for the model completion of the universal theory of a more
general class of fields: LDF₀, the universal theory of fields of characteristic zero
together with a finite-dimensional Lie algebra acting as derivations. The goal of this
short note is to show that starting from McGrail’s results one can quickly write down
axioms for Yaffe’s model completion, that is, one can reduce the noncommutative
case to the commutative case.

Another axiomatization of the model completion of a theory of differential fields
with noncommuting derivations has been given by Pierce [4] using differential forms
and a version of the Frobenius Theorem. In fact, one can state the Frobenius
Theorem as a result that allows one to replace noncommuting vector fields with
commuting ones: given an involutive analytic system \(L_y, y \in M \), of tangent spaces
of rank \(p \) on an analytic manifold \(M \) and a point \(x \in M \), one can choose analytic
coordinates \(x_1, \ldots, x_p \) around \(x \) such that \(L_y \) is spanned by \(\frac{\partial}{\partial x_1}, \ldots, \frac{\partial}{\partial x_p} \)
for all \(y \) in an open set containing \(x \) (cf. [6], Theorem 1.3.3). In his introductory
remarks, Pierce states that one might be able to reduce the noncommutative case
to the commutative case ([4], pp. 924-925) but does not give details[1] proceeding rather to develop his results ab initio. The present note carries through this
reduction.

Received by the editors November 25, 2005 and, in revised form, January 21, 2006.
2000 Mathematics Subject Classification. Primary 03C10; Secondary 35A05, 12H05.
The preparation of this article was partially supported by NSF Grant CCR-0096842.

Note added in proof. The proof of Theorem 5.3 of [4] does give more of an indication as to
how this can be done. It should also be noted that there are similarities between Lemmas 5.2 and
4.7 of [4] and Lemmas 2.1 and 2.2 of this paper, although the proofs are different.

©2007 American Mathematical Society
Reverts to public domain 28 years from publication

1929
2. Commuting bases of derivations

In [7], Yaffe defines the universal theory \(LDF_0 \) of Lie differential fields. To do this he fixes a field \(F \) of characteristic zero, a finite-dimensional \(F \)-vector space \(\mathcal{L} \) with a Lie multiplication making it a Lie algebra over a subfield of \(F \), and a vector space homomorphism \(\phi_x : \mathcal{L} \to \text{Der}(F) \), the Lie algebra of derivations on \(F \), preserving the Lie multiplication. We fix a basis \(\{D_1, \ldots, D_n\} \) of \(\mathcal{L} \) and let \([D_k, D_l] = \sum_m \alpha_{kl}^m D_m \) for some \(\alpha_{kl}^m \in \mathcal{F} \). The elements \(\alpha_{kl}^m \) are called the structure constants of \(\mathcal{L} \). The language for \(LDF_0 \) is the language of rings together with unary function symbols \(D_i, i = 1, \ldots, n \), and constant symbols for each element of \(F \). The theory \(LDF_0 \) consists of

- the diagram of \(F \) including the action of the \(D_i \),
- the theory of integral domains of characteristic zero,
- axioms stating that the \(D_i \) are derivations,
- for each \(k, l \) an axiom of the form \(\forall x (D_k D_l x - D_l D_k x = \sum_m \alpha_{kl}^m D_m x) \).

We shall refer to a model of \(LDF_0 \) as a Lie ring over \(\mathcal{L} \) or, more simply, a Lie ring, if it is clear which \(\mathcal{L} \) is used.

We will need another concept from [7]: the ring of normal polynomials. This is defined as follows. Let \(\mathcal{A} \) be a model of \(LDF_0 \). For each \(I = (i_1, \ldots, i_n) \in \mathbb{N}^n \) define a variable \(X_I \) and consider the ring \(\mathcal{R}_A = \mathcal{A}[\{X_I\}_{I \in \mathbb{N}^n}] \) of polynomials in this infinite set of variables. Yaffe shows ([7], pp. 57-61) how one can define an action of \(\mathcal{L} \) on \(\mathcal{R}_A \) so that this ring is a model of \(LDF_0 \), and one sees from his proof that the \(D_i \) act as linearly independent derivations. Although this is not needed in the following lemma, we note that Yaffe also shows that if \(B \) is a model of \(LDF_0 \) that extends \(A \) and \(b \in B \), then the map from \(\mathcal{R}_A \) to \(B \) given by \(X_I \mapsto D^I(b) = D_1^{i_1} D_2^{i_2} \ldots D_n^{i_n}(b) \) for all \(I \) is a homomorphism of structures. Yaffe’s construction of \(\mathcal{R}_A \) allows us to conclude

Lemma 2.1. If \(\mathcal{A} \) is a model of \(LDF_0 \) with derivations \(D_1^A, \ldots, D_n^A \), then \(\mathcal{A} \) embeds in a model \(\mathcal{B} \) of \(LDF_0 \) with derivations \(D_1^B, \ldots, D_n^B \) extending the derivations of \(\mathcal{A} \) such that the \(D_1^B, \ldots, D_n^B \) are linearly independent over \(\mathcal{B} \).

To show that the axioms in the next section yield a model completion of this theory we need two additional facts that are contained in the next results.

Lemma 2.2. Let \(\mathcal{A} \) with derivations \(D_1^A, \ldots, D_n^A \) be a model of \(LDF_0 \) and assume that the \(D_i^A \) are linearly independent over \(\mathcal{A} \). Then there exist \(a_{i,j}^A \in \mathcal{A} \) such that the derivations \(D_i^A = \sum_j a_{i,j}^A D_j^A \) are linearly independent over \(\mathcal{A} \) and commute.

Proof. We shall assume \(\mathcal{A} \) is a field and follow the proof of Proposition 6 in Chapter 0, §5 of [11], with a few small modifications. As noted in the Introduction, this is an algebraic version of the Frobenius Theorem.

Let \(\mathcal{C} = \bigcap_{i=1}^n \text{Ker } D_i^A \). Let \(\{x_i\}_{i \in I} \) be a transcendence basis of \(\mathcal{A} \) over \(\mathcal{C} \). Let \(\delta_i \) be the unique derivation on \(\mathcal{A} \) satisfying \(\delta_i(c) = 0 \) for all \(c \in \mathcal{C} \) and \(\delta_i(x_j) = 1 \) if \(i = j \) and 0 if \(i \neq j \). Any \(x \in \mathcal{A} \) will lie in a subfield algebraic over \(\mathcal{C}(x_1, \ldots, x_N) \) for some \(N \), and so \(\delta_i(x) = 0 \) for all \(i > N \). For any derivation \(D \) of \(\mathcal{A} \) that is trivial on \(\mathcal{C} \), consider the sum \(\sum_{i \in I} D(x_i) \delta_i \). Although this sum is infinite, the previous remark shows that for any \(x \in \mathcal{A} \), the sum \(\sum_{i \in I} D(x_i) \delta_i \) makes sense and, using the results of Chapter VII, §5 of [2], one can show that \(D = \sum_{i \in I} D(x_i) \delta_i \).
Since the D_i are linearly independent over A there exist $a_{i,j} \in A$ such that the derivations $D^A_i = \sum_j a_{i,j}D_j^A$ satisfy (after a possible renumbering of the δ_j)

$$D^A_i = \delta_i \pmod{\sum_{j > n} A\delta_j}$$

for $i = 1, \ldots, n$. To see that the D^A_i are linearly independent over A note that if $\sum_j b_j D^A_j = 0$, then $0 = \sum_j b_j D^A_j(x_i) = b_i$. We now claim that the D^A_i commute. Since the δ_i commute, we have that

$$[D^A_r, D^A_s] = 0 \pmod{\sum_{i > n} A\delta_i}$$

for any r, s. Since the A-span of the D^A_i is closed under $[,]$, we have that there exist $b_{r,s,j} \in A$ such that

$$[D^A_r, D^A_s] = \sum_{j=1}^n b_{r,s,j}D^A_j = \sum_{j=1}^n b_{r,s,j}\delta_j \pmod{\sum_{i > n} A\delta_i}.$$

Therefore, we have that $b_{r,s,j} = 0$ for all r, s, and j, and hence that the D^A_i commute. \hfill \Box

We shall need to compare Lie rings for two different Lie algebras L_1 and L_2. We will denote by LDF^1_0 (resp. LDF^2_0) the theory of Lie rings based on the action of the Lie algebra L_1 (resp. L_2). We will assume the two algebras are of the same dimension over F.

Lemma 2.3. Let A with derivations D^1_1, \ldots, D^1_n be a model of LDF^1_0 and assume that the D^1_i are linearly independent over A. For $i = 1, \ldots, n$, let $D^2_i = \sum j a_{i,j}D^1_j$ for some $a_{i,j} \in A$ and assume that A with derivations D^2_1, \ldots, D^2_n is a model of LDF^2_0. If B is an extension of A that is a model of LDF^1_0 with respect to the extensions of the derivations D^1_1, \ldots, D^1_n, then the formulas $D^2_i = \sum j a_{i,j}D^1_j$ define derivations on B such that B with these derivations is a model of LDF^2_0.

Proof. Let $\alpha^{m}_{k,l}$ be the structure constants of L_1 and let $\beta^{m}_{k,l}$ be the structure constants of L_2. We have

$$[D^2_i, D^2_k] = \sum_j (\sum a_{l,i}D^1_l(a_{k,j}) - a_{k,i}D^1_k(a_{l,j})) + \sum_{r,s} a_{l,r,a_{k,s}}\alpha^{l}_{r,s}D^1_j,$$

and

$$\sum_m \beta^{m}_{i,k}D^2_m = \sum_j (\sum_m \beta^{m}_{i,k}a_{m,j})D^1_j.$$

First note that since the D^1_i are linearly independent over A, these derivations are linearly independent over B as well. We therefore have that $[D^2_i, D^2_k] = \sum_m \beta^{m}_{i,k}D^2_m$ if and only if

$$\sum_i (a_{l,i}D^1_l(a_{k,j}) - a_{k,i}D^1_k(a_{l,j})) + \sum_{r,s} a_{l,r,a_{k,s}}\alpha^{l}_{r,s} = \sum_m \beta^{m}_{i,k}a_{m,j}$$

for all j. If this holds in A, then it will hold in B. \hfill \Box
In particular, if the basis elements D_i^2 commute, we have

Corollary 2.4. Let A with derivations D_1^1, \ldots, D_n^1 be a model of LDF_0 and assume that the D_i^1 are linearly independent over A. For $i = 1, \ldots, n$, let $D_i^2 = \sum_j a_{i,j} D_j^1$ for some $a_{i,j} \in A$ and assume that the D_i^2 commute as derivations on A. If B is an extension of A that is a model of LDF_0, then the D_i^2 commute as derivations on B.

Note that in model theoretic terms, the statement that the basis elements D_i^2 commute, which a priori is a universal statement, is actually (equivalent to) a quantifier-free statement, given that the D_i^1 are linearly independent.

3. **Axioms for the model completion of LDF_0**

Let us begin by recalling the situation for fields with commuting derivations. In [3], McGrail gave axioms for the model completion m-DCF of the universal theory m-DF of differential fields with m commuting derivations D_1, \ldots, D_n. She also showed that this former theory has elimination of quantifiers. In particular, for any field F with m commuting derivations and any system

$$S(u_1, \ldots, u_r, v_1, \ldots, v_s) = \{ f_1(u_1, \ldots, u_r, v_1, \ldots, v_s) = 0, \ldots, f_k(u_1, \ldots, u_r, v_1, \ldots, v_s) = 0, g(u_1, \ldots, u_r, v_1, \ldots, v_s) \neq 0 \}$$

of differential polynomials, there exist systems $T_i(u_1, \ldots, u_r), \ldots, T_t(u_1, \ldots, u_r)$ such that for any $u_1, \ldots, u_r \in F$ there exists a solution v_1, \ldots, v_s in some differential extension of F if and only if the u_i satisfy one of the systems $T_i(u_1, \ldots, u_r)$.

Let F, L and ϕ_F be as above. Let R_F be the ring of normal polynomials with coefficients in F. For any $t \in \mathbb{N}$, we will denote by $R_F[x_1, \ldots, x_t]$ the usual (not differential) ring of polynomials in the variables x_1, \ldots, x_t with coefficients in R_F. The axioms for $LDCF_0$, the theory of Lie differentially closed fields of characteristic zero, are the axioms for LDF_0 plus the axioms for fields and the following axioms:

1. For any t and any polynomial $p(x_1, \ldots, x_t, \{ X_I \}) \in R_F[x_1, \ldots, x_t]$ we have an axiom that states that for any a_1, \ldots, a_n such that $p(a_1, \ldots, a_n, \{ X_I \}) \neq 0$ there exists b such that $p(a_1, \ldots, a_n, \{ D_i^1(b) \}) \neq 0$;
2. There exists an n^2-tuple of elements $x = (x_1, \ldots, x_{n^2})$ such that the derivations $D_{x_1}^1 = \sum_j x_{1,j} D_j, \ldots, D_{x_n}^1 = \sum_j x_{n,j} D_j$ form a linearly independent set of commuting derivations;
3. For any x such that $\{ D_1^1, \ldots, D_n^1 \}$ is a linearly independent set of commuting derivations and any system $S(u_1, \ldots, u_n, v_1, \ldots, v_m)$ involving differential polynomials in the D_i^1, we have

$$\exists u_1, \ldots, v_m S(u_1, \ldots, u_n, v_1, \ldots, v_m)$$

if and only if

$$\bigvee_{j=1}^l T_j(u_1, \ldots, u_n),$$

where the T_j are as described above.

Note that (3) implies that the models of this theory are algebraically closed.

We will use Blum’s criteria ([5], Section 17) to show that these axioms give the model completion of LDF_0. The first step is to show that any model A of LDF can
be extended to a model of \(LDCF_0\). Taking quotient fields of the ring constructed in Lemma 2.1 we extend \(\mathcal{A}\) to a model \(K^0\) of \(LDF_0\) were the derivations are linearly independent over \(K^0\). Note that the ring constructed in Lemma 2.1 allows us to conclude that \(K^0\) satisfies axiom scheme (1). Lemma 2.2 implies that axiom (2) holds. Let \(N_0\) be the set of \(n^2\)-tuples of elements in \(K^0\) and assume that this set is well ordered. Let \(x\) be the smallest element of \(N_0\) such that \(\{D^0_{11}, \ldots, D^0_{nn}\}\) is a linearly independent set of commuting derivations and let \(K^1_0\) be the differential closure of \(K^0\) thought of as a field with commuting derivations \(\{D^0_{11}, \ldots, D^0_{nn}\}\). Since the \(D_i\) can be expressed a \(K^0\)-linear combinations of the \(D^0_{ii}\), Lemma 2.3 implies that \(K^0_0\) is still a model of \(LDF_0\). Let \(\bar{x}\) be the next smallest element of \(N_0\), such that \(\{D^0_{1\bar{x}}, \ldots, D^0_{n\bar{x}}\}\) is a linearly independent set of commuting derivations and let \(K^0_1\) be the differential closure of \(K^0_0\) thought of as a field with commuting derivations \(\{D^0_{1\bar{x}}, \ldots, D^0_{n\bar{x}}\}\). We can continue in this way for all elements of \(N_0\) and, taking unions, form a field \(K^0\) such that for any \(x\) in \(N_0\) such that \(\{D^0_{i1}, \ldots, D^0_{in}\}\) is a linearly independent set of commuting derivations, \(K^0\) contains the differential closure of \(K^0\) thought of as a field with commuting derivations \(\{D^0_{i1}, \ldots, D^0_{in}\}\). Again Lemma 2.3 implies that \(\bar{K}^0\) is a model of \(LDF_0\). We let \(K^1\) be the quotient field of \(\bar{K}^0\). Note that \(K^1\) satisfies axiom scheme (1). We now repeat this process and form a field \(K^2\) such that for any \(n^2\)-tuple \(x\) of elements in \(K^1\) such that \(\{D^1_{i1}, \ldots, D^1_{in}\}\) is a linearly independent set of commuting derivations, \(K^2\) contains the differential closure of \(K^1\) thought of as a field with commuting derivations \(\{D^1_{i1}, \ldots, D^1_{in}\}\) and also satisfies axiom scheme (1). One now sees that \(K^\infty = \bigcup K^i\) is a model of \(LDF_0\) and satisfies the axioms of \(LDCF_0\).

We will now show that if \(\mathcal{A} \models LDF_0\), \(\mathcal{B} \models LDCF_0\), \(\mathcal{B}\) being \(|\mathcal{A}|^\ast\)-saturated and \(\mathcal{A} \subset \mathcal{B}\), then for any simple extension \(\mathcal{A}(a)\) there is an \(\mathcal{A}\)-embedding \(f : \mathcal{A}(a) \to \mathcal{B}\). We will first show that we can assume that \(\mathcal{A}\) satisfies axioms (1) and (2) above.

Let \(\mathcal{R}_{\mathcal{A}(a)} = \mathcal{A}(a)(\{X_I\})\) be the field fractions of normal polynomials over \(\mathcal{A}(a)\). Axiom (1) and saturation imply that there is an \(\mathcal{A}\)-embedding of \(\mathcal{A}(\{X_I\})\) into \(\mathcal{B}\). Furthermore, \(\mathcal{A}(\{X_I\})\) satisfies axiom schemes (1) and (2). If we can extend this embedding to \(\mathcal{A}(\{X_I\})(a)\), then restricting to \(\mathcal{A}(a)\) will give the desired conclusion. We will therefore assume from the beginning that \(\mathcal{A}\) satisfies axiom schemes (1) and (2).

Let \(X\) be elements of \(\mathcal{A}\) such that \(D^1_{x}\) are linearly independent commuting derivations. Corollary 2.3 implies that these derivations commute on \(\mathcal{A}(a)\) as well. The isomorphism type of \(a\) over the field \(\mathcal{A}\) with derivations \(\{D^1_{x}\}\) is determined by the set of \(\{D^1_{x}\}\)-differential polynomials that \(a\) satisfies and by the set that it does not satisfy. By axiom scheme (3) and saturation, we can realize this type in \(\mathcal{B}\) and therefore get an embedding of \(\mathcal{A}(a)\) into \(\mathcal{B}\), considered as \(\{D^1_{x}\}\)-differential fields. Since the \(\{D_i\}\) are linear combinations of the \(\{D^1_{x}\}\), this is also an embedding as models of \(LDF_0\).

Acknowledgments

The author would like to thank Evelyne Hubert for several useful discussions and especially for pointing out the relation between the result of Cassidy and Kolchin appearing as Proposition 6, p. 12 of [1] and the Frobenius Theorem. He would also like to thank Yoav Yaffee for discussions that helped clarify his initially vague ideas and the anonymous referee for useful comments.
References

Department of Mathematics, North Carolina State University, Box 8205, Raleigh, North Carolina 27695-8205

E-mail address: singer@math.ncsu.edu

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use