Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS
   
Mobile Device Pairing
Green Open Access
Proceedings of the American Mathematical Society
Proceedings of the American Mathematical Society
ISSN 1088-6826(online) ISSN 0002-9939(print)

 

On Curtis' theorem about finite octonionic loops


Authors: Paul Boddington and Dmitriy Rumynin
Journal: Proc. Amer. Math. Soc. 135 (2007), 1651-1657
MSC (2000): Primary 17D05; Secondary 17B20
Published electronically: January 9, 2007
MathSciNet review: 2286072
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We prove a stronger version of Curtis' classification theorem of finite subloops of the Cayley octonions $ \mathbb{O}$.


References [Enhancements On Off] (What's this?)

  • 1. C. Jordan, Memoire sur les equations differentielles lineaires a integrale algebrique, J. Reine Angew. Math., 84 (1878), 89-215.
  • 2. John McKay, Graphs, singularities, and finite groups, The Santa Cruz Conference on Finite Groups (Univ. California, Santa Cruz, Calif., 1979), Proc. Sympos. Pure Math., vol. 37, Amer. Math. Soc., Providence, R.I., 1980, pp. 183–186. MR 604577 (82e:20014)
  • 3. R. T. Curtis, A classification and investigation of the finite subloops of the Cayley-Dickson algebra, manuscript, 1970.
  • 4. R. T. Curtis, Construction of a family of Moufang loops, Math. Proc. Cambridge Philos. Soc., to appear.
  • 5. Y. Ito and I. Nakamura, Hilbert schemes and simple singularities, New trends in algebraic geometry (Warwick, 1996) London Math. Soc. Lecture Note Ser., vol. 264, Cambridge Univ. Press, Cambridge, 1999, pp. 151–233. MR 1714824 (2000i:14004), http://dx.doi.org/10.1017/CBO9780511721540.008
  • 6. James E. Humphreys, Reflection groups and Coxeter groups, Cambridge Studies in Advanced Mathematics, vol. 29, Cambridge University Press, Cambridge, 1990. MR 1066460 (92h:20002)
  • 7. John H. Conway and Derek A. Smith, On quaternions and octonions: their geometry, arithmetic, and symmetry, A K Peters Ltd., Natick, MA, 2003. MR 1957212 (2004a:17002)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 17D05, 17B20

Retrieve articles in all journals with MSC (2000): 17D05, 17B20


Additional Information

Paul Boddington
Affiliation: Department of Mathematics, University of Warwick, Coventry, CV4 7AL, United Kingdom
Email: paulsboddington@yahoo.co.uk

Dmitriy Rumynin
Affiliation: Department of Mathematics, University of Warwick, Coventry, CV4 7AL, United Kingdom
Email: rumynin@maths.warwick.ac.uk

DOI: http://dx.doi.org/10.1090/S0002-9939-07-08707-2
PII: S 0002-9939(07)08707-2
Keywords: Octonions, quaternions, loop, root system
Received by editor(s): July 19, 2005
Received by editor(s) in revised form: February 24, 2006
Published electronically: January 9, 2007
Communicated by: Jonathan I. Hall
Article copyright: © Copyright 2007 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.