Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 

 

Dynamic approach to a stochastic domination: The FKG and Brascamp-Lieb inequalities


Authors: Tadahisa Funaki and Kou Toukairin
Journal: Proc. Amer. Math. Soc. 135 (2007), 1915-1922
MSC (2000): Primary 82B31; Secondary 82B20, 60K35
Published electronically: February 6, 2007
MathSciNet review: 2286104
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: A coupling based on a pair of stochastic differential equations is introduced to show a stochastic domination for a system with continuous spins, from which the FKG and Brascamp-Lieb like inequalities follow.


References [Enhancements On Off] (What's this?)

  • 1. L. Ambrosio, L. A. Caffarelli, Y. Brenier, G. Buttazzo, and C. Villani, Optimal transportation and applications, Lecture Notes in Mathematics, vol. 1813, Springer-Verlag, Berlin; Centro Internazionale Matematico Estivo (C.I.M.E.), Florence, 2003. Lectures from the C.I.M.E. Summer School held in Martina Franca, September 2–8, 2001; Edited by Caffarelli and S. Salsa. MR 2006302
  • 2. Dominique Bakry and Dominique Michel, Sur les inégalités FKG, Séminaire de Probabilités, XXVI, Lecture Notes in Math., vol. 1526, Springer, Berlin, 1992, pp. 170–188 (French). MR 1231994, 10.1007/BFb0084321
  • 3. Herm Jan Brascamp and Elliott H. Lieb, On extensions of the Brunn-Minkowski and Prékopa-Leindler theorems, including inequalities for log concave functions, and with an application to the diffusion equation, J. Functional Analysis 22 (1976), no. 4, 366–389. MR 0450480
  • 4. Luis A. Caffarelli, Monotonicity properties of optimal transportation and the FKG and related inequalities, Comm. Math. Phys. 214 (2000), no. 3, 547–563. MR 1800860, 10.1007/s002200000257
    Luis A. Caffarelli, Erratum: “Monotonicity of optimal transportation and the FKG and related inequalities” [Comm. Math. Phys. 214 (2000), no. 3, 547–563; MR1800860 (2002c:60029)], Comm. Math. Phys. 225 (2002), no. 2, 449–450. MR 1889232, 10.1007/s002200100560
  • 5. G. Da Prato and J. Zabczyk, Ergodicity for infinite-dimensional systems, London Mathematical Society Lecture Note Series, vol. 229, Cambridge University Press, Cambridge, 1996. MR 1417491
  • 6. C. M. Fortuin, P. W. Kasteleyn, and J. Ginibre, Correlation inequalities on some partially ordered sets, Comm. Math. Phys. 22 (1971), 89–103. MR 0309498
  • 7. Giambattista Giacomin, On stochastic domination in the Brascamp-Lieb framework, Math. Proc. Cambridge Philos. Soc. 134 (2003), no. 3, 507–514. MR 1981215, 10.1017/S0305004102006552
  • 8. Y. HARIYA, private communication, 2005, Oct.
  • 9. Richard Holley, Remarks on the 𝐹𝐾𝐺 inequalities, Comm. Math. Phys. 36 (1974), 227–231. MR 0341552
  • 10. Kanji Ichihara and Hiroshi Kunita, A classification of the second order degenerate elliptic operators and its probabilistic characterization, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 30 (1974), 235–254. MR 0381007
    Kanji Ichihara and Hiroshi Kunita, Supplements and corrections to the paper: “A classification of the second order degenerate elliptic operators and its probabilistic characterization” (Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 30 (1974), 235–254), Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 39 (1977), no. 1, 81–84. MR 0488328
  • 11. Nobuyuki Ikeda and Shinzo Watanabe, Stochastic differential equations and diffusion processes, 2nd ed., North-Holland Mathematical Library, vol. 24, North-Holland Publishing Co., Amsterdam; Kodansha, Ltd., Tokyo, 1989. MR 1011252
  • 12. Thomas M. Liggett, Interacting particle systems, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 276, Springer-Verlag, New York, 1985. MR 776231
  • 13. C. J. Preston, A generalization of the 𝐹𝐾𝐺 inequalities, Comm. Math. Phys. 36 (1974), 233–241. MR 0341553
  • 14. Daniel W. Stroock, Probability theory, an analytic view, Cambridge University Press, Cambridge, 1993. MR 1267569

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 82B31, 82B20, 60K35

Retrieve articles in all journals with MSC (2000): 82B31, 82B20, 60K35


Additional Information

Tadahisa Funaki
Affiliation: Graduate School of Mathematical Sciences, The University of Tokyo, Komaba, Tokyo 153-8914, Japan
Email: funaki@ms.u-tokyo.ac.jp

Kou Toukairin
Affiliation: Graduate School of Mathematical Sciences, The University of Tokyo, Komaba, Tokyo 153-8914, Japan
Address at time of publication: Lehman Brothers Japan Inc., Roppongi Hills, Tokyo
Email: kou.toukairin@lehman.com

DOI: http://dx.doi.org/10.1090/S0002-9939-07-08757-6
Keywords: Stochastic domination, FKG inequality, Brascamp-Lieb inequality, Coupling
Received by editor(s): April 10, 2006
Published electronically: February 6, 2007
Additional Notes: The first author was supported in part by JSPS Grants (B)14340029 and 17654020
Communicated by: Edward C. Waymire
Article copyright: © Copyright 2007 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.