The universal central extension of the three-point loop algebra

Authors:
Georgia Benkart and Paul Terwilliger

Journal:
Proc. Amer. Math. Soc. **135** (2007), 1659-1668

MSC (2000):
Primary 17B37

DOI:
https://doi.org/10.1090/S0002-9939-07-08765-5

Published electronically:
January 8, 2007

MathSciNet review:
2286073

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We consider the three-point loop algebra,

**[ABG]**B.N. Allison, G. Benkart, and Y. Gao, Central extensions of Lie algebras graded by finite root systems, Math. Ann.**316**(2000), 499-527. MR**1752782 (2001h:17020)****[BK]**S. Berman and Y. Krylyuk, Universal central extensions of twisted and untwisted Lie algebras extended over commutative rings, J. Algebra**173**(1995), 302-347. MR**1325778 (96e:17066)****[Br]**M. Bremner, Generalized affine Kac-Moody Lie algebras over localizations of the polynomial ring in one variable, Canad. Math. Bull.**37**(1) (1994), 21-28. MR**1261553 (95d:17025)****[EO]**A. Elduque and S. Okubo,

Lie algebras with -action and structurable algebras,`arXiv:math.RA/0508558`, J. Algebra (in press).**[HT]**B. Hartwig and P. Terwilliger, The tetrahedron algebra, the Onsager algebra, and the loop algebra,`arXiv:math-ph/0511004`, J. Algebra (in press).**[ITW]**T. Ito, P. Terwilliger, C. Weng, The quantum algebra and its equitable presentation, J. Algebra,**298**(2006), 284-301.**[Ka]**V.G. Kac,*Infinite Dimensional Lie Algebras*, Third Ed., Cambridge U. Press, Cambridge, 1990. MR**1104219 (92k:17038)****[K]**C. Kassel, Kähler differentials and coverings of complex simple Lie algebras extended over a commutative ring, J. Pure and Applied Alg.**34**(1984), 265-275. MR**0772062 (86h:17013)****[KL]**C. Kassel and J.-L. Loday, Extensions centrales d'algèbres de Lie, Ann. Inst. Fourier, Grenoble**32**(1982), 119-142. MR**0694130 (85g:17004)****[MP]**R.V. Moody and A. Pianzola,*Lie Algebras with Triangular Decomposition*, Wiley, New York 1995. MR**1323858 (96d:17025)****[O]**L. Onsager,

Crystal statistics. I. A two-dimensional model with an order-disorder transition.*Phys. Rev. (2)***65**(1944), 117-149. MR**0010315 (5:280d)****[P]**J. H. H. Perk,

Star-triangle relations, quantum Lax pairs, and higher genus curves.*Proceedings of Symposia in Pure Mathematics***49**, 341-354.

Amer. Math. Soc., Providence, RI, 1989. MR**1013140 (91e:82029)**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (2000):
17B37

Retrieve articles in all journals with MSC (2000): 17B37

Additional Information

**Georgia Benkart**

Affiliation:
Department of Mathematics, University of Wisconsin, Madison, Wisconsin 53706

Email:
benkart@math.wisc.edu

**Paul Terwilliger**

Affiliation:
Department of Mathematics, University of Wisconsin, Madison, Wisconsin 53706

Email:
terwilli@math.wisc.edu

DOI:
https://doi.org/10.1090/S0002-9939-07-08765-5

Keywords:
${\mathfrak{sl}}_2$ loop algebra,
universal central extension,
tetrahedron Lie algebra,
Onsager Lie algebra.

Received by editor(s):
December 17, 2005

Received by editor(s) in revised form:
February 24, 2006

Published electronically:
January 8, 2007

Additional Notes:
The first author’s support from NSF grant #DMS–0245082 is gratefully acknowledged.

Communicated by:
Dan M. Barbasch

Article copyright:
© Copyright 2007
American Mathematical Society

The copyright for this article reverts to public domain 28 years after publication.