Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

A sharp inequality for the logarithmic coefficients of univalent functions


Author: Oliver Roth
Journal: Proc. Amer. Math. Soc. 135 (2007), 2051-2054
MSC (2000): Primary 30C50; Secondary 30A10
DOI: https://doi.org/10.1090/S0002-9939-07-08660-1
Published electronically: March 2, 2007
MathSciNet review: 2299479
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We prove the sharp inequality

$\displaystyle \sum \limits_{k=1}^{\infty} \left( \frac{k}{k+1} \right)^2 \vert ... ...{\infty} \left( \frac{k}{k+1} \right)^2 \frac{1}{k^2}=\frac{2 \, \pi^2-12}{3} $

for the logarithmic coefficients $ c_k(f)$ of a normalized univalent function $ f$ in the unit disk.


References [Enhancements On Off] (What's this?)

  • 1. Andreev, V. V., Duren, P. L., Inequalities for logarithmic coefficients of univalent functions and their derivatives, Indiana Univ. Math. J37, No. 4, 721-733, 1988. MR 0982827 (90c:30026)
  • 2. Danikas, N., Ruscheweyh, St., Semi-convex hulls of analytic functions in the unit disk, Analysis, No. 4, 309-318, 1999. MR 1743524 (2001c:30020)
  • 3. Duren, P. L., Univalent functions, Springer (1983). MR 0708494 (85j:30034)
  • 4. Duren, P. L., Leung, Y. L., Logarithmic coefficients of univalent functions, J. Anal. Math. 36, 36-43, 1979. MR 0581799 (81i:30018)
  • 5. de Branges, L., A proof of the Bieberbach conjecture, Acta Math154, 137-152, 1985. MR 0772434 (86h:30026)
  • 6. FitzGerald, C. H., Pommerenke, Chr., The de Branges theorem on univalent functions, Trans. Amer. Math. Soc290 No. 2, 683-690, 1985.MR 0792819 (87b:30023)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 30C50, 30A10

Retrieve articles in all journals with MSC (2000): 30C50, 30A10


Additional Information

Oliver Roth
Affiliation: Mathematisches Institut, Universität Würzburg, D–97074 Würzburg, Germany
Email: roth@mathematik.uni-wuerzburg.de

DOI: https://doi.org/10.1090/S0002-9939-07-08660-1
Keywords: Univalent functions, logarithmic coefficients, de Branges' weight functions
Received by editor(s): September 13, 2005
Received by editor(s) in revised form: January 31, 2006
Published electronically: March 2, 2007
Dedicated: Dedicated to the memory of Professor Nikolaos Danikas
Communicated by: Juha M. Heinonen
Article copyright: © Copyright 2007 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society