TRANSVERSALS
FOR STRONGLY ALMOST DISJOINT FAMILIES

PAUL J. SZEPTYCKI

(Communicated by Julia Knight)

Abstract. For a family of sets A, and a set X, X is said to be a transversal of A if $X \subseteq \bigcup A$ and $|a \cap X| = 1$ for each $a \in A$. X is said to be a Bernstein set for A if $\emptyset \neq a \cap X \neq a$ for each $a \in A$. Erdős and Hajnal first studied when an almost disjoint family admits a set such as a transversal or Bernstein set. In this note we introduce the following notion: a family of sets A is said to admit a σ-transversal if A can be written as $A = \bigcup \{A_n : n \in \omega\}$ such that each A_n admits a transversal. We study the question of when an almost disjoint family admits a σ-transversal and related questions.

1. Introduction

Given a family of sets A, we can say that a set X splits the sets in A if for every $a \in A$, $X \cap a$ is nonempty but small. It is natural to consider notions of smallness that include cardinality, small in measure, topologically small and others. For example, a Bernstein set $X \subseteq \mathbb{R}$ is a set that splits the family of perfect subsets of \mathbb{R}, where small means “is not equal to”. In [2], the question of which almost disjoint families can be split was considered.

Most of our notation and terminology are standard and can be found in [6]. A family of sets $A \subseteq [\lambda]^{<\kappa}$ is almost disjoint if pairwise intersections are of cardinality $< \kappa$. A family of sets is said to be strongly almost disjoint if pairwise intersections are finite, and r-almost disjoint if pairwise intersections have cardinality less than r. A family of sets A is said to be point-finite (point-countable) if $\{a \in A : x \in a\}$ is finite (countable).

The following theorems were proven in [2].

Theorem 1. Assume GCH. For every strongly almost disjoint family A consisting of sets of size $\geq \aleph_1$, if $|A| \leq \aleph_\omega$, then A has the Bernstein property B. I.e., there is X such that $\emptyset \neq a \cap X \neq a$ for each $a \in A$.

Theorem 2. For each $r < \omega$ and each r-almost disjoint family A of countable sets, if $|A| = \aleph_n$, then there is X such that $\emptyset \neq |a \cap X| < (r - 1)(n + 1) + 2$ for each $a \in A$.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
Theorem 3. \(\omega \times \omega \) can be covered by countably many functions and their inverses.

The rows and columns form a 2-almost disjoint family, and each function is a transversal of the columns and each inverse is a transversal of the rows. The content of the theorem is that there are countably many of these partial transversals that cover \(\omega \times \omega \).

In [5] the question of whether certain strongly almost disjoint families of sets may admit a countable family of partial transversals covering the underlying set was central to the analysis of scattered compact spaces of finite Cantor-Bendixson height (e.g., the one-point compactification of \(\omega \times \omega \)). Motivated by those preliminary results we now study more systematically when a strongly almost disjoint family admits a countable family of partial transversals (possible covering the underlying set).

Following the notation of [2], we introduce the following notation.

Definition 4. Suppose that \(m, p, r, s \) are cardinals. \(M(m, p, r) \rightarrow \sigma - B(s) \) means that for every \(r \)-almost disjoint family \(A \) of size \(m \) consisting of infinite sets of size \(\leq p \), there are sets \(\{ X_n : n < \omega \} \) and \(\{ A_n : n < \omega \} \) such that

1. \(A = \bigcup \{ A_n : n < \omega \} \), and
2. \(0 \neq |X_n \cap a| < s \) for each \(a \in A_n \),
3. \(X_n \subseteq \bigcup A_n \).

Also, \(M(m, p, r) \rightarrow \sigma - B \) means (1), (3), and instead of (2) we require

\[
(2') \quad 0 \neq X_n \cap a \neq a \quad \text{for each } a \in A_n.
\]

In the case that \(s = 2 \), the family of sets \(\{ X_n : n \in \omega \} \) satisfying (1)-(3) will be called a \(\sigma \)-transversal of \(A \). A \(\sigma \)-transversal that covers the underlying set will be called a covering \(\sigma \)-transversal. Even if a family \(A \) admits a transversal, one cannot expect to obtain a covering \(\sigma \)-transversal unless for every \(a \in A \), all but countably many points of \(a \) are covered by \(A \setminus \{ a \} \). For example, any disjoint family of uncountable sets obviously admits a transversal, but there can be no covering \(\sigma \)-transversal.

In general, one cannot expect to prove \(M(m, p, r) \rightarrow \sigma - B(s) \) for \(s \leq \omega \) unless \(r \leq \omega \). Indeed, if \(A = \{ a_{\beta, \alpha} : \beta < \alpha < \omega_1 \} \) is an almost disjoint family of uncountable subsets of \(\omega_1 \) such that \((\beta, \alpha) \subseteq a_{\beta, \alpha} \subseteq (\beta, \omega_1) \) for each \(\beta < \alpha \), then \(A \) witnesses that \(M(\omega_1, \omega_1, \omega_1) \not\rightarrow \sigma - B(\aleph_0) \); indeed, if \(\{ X_n : n \in \omega \} \) is a family of subsets of \(\omega_1 \). Let \(\beta \) be such that \(X_n \subseteq \beta \) whenever \(X_n \) is countable. Then pick \(\alpha > \beta \) so that \(X_n \cap a \) is infinite whenever \(X_n \) is uncountable. Then \(a_{\beta, \alpha} \) is either disjoint from \(X_n \) or has infinite intersection with \(X_n \) for every \(n \in \omega \).

Thus, we may only expect to obtain positive results about \(\sigma \)-transversals for strongly almost disjoint families or almost disjoint families with additional properties.
Note also that a strongly almost disjoint family may not admit a transversal, even if it is countable and 2-almost disjoint. Indeed, if \(A \) is a maximal 2-almost disjoint family in \([\omega]^\aleph_0 \), then by maximality, it does not admit a transversal. Even a 2-almost disjoint and point-finite family may not admit a transversal: the collection of rows and columns of \(\omega \times \omega_1 \) has no transversal.

2. \(\sigma \)-Transversals of Strongly Almost Disjoint Families

Any family \(A \) of subsets of \(\omega \) admits a \(\sigma \)-transversal for trivial reasons: the families \(X_n = \{ n \} \) and \(A_n = \{ a \in A : n \in a \} \) form a \(\sigma \)-transversal of \(A \).

almost disjoint family of subsets of \(\omega \) consisting of infinite \(X_n \)'s. However, any almost disjoint family \(A \) of subsets of \(\omega \) admits a \(\sigma - B(\aleph_0) \) family consisting of infinite sets: to see this find \(\{ a_n : n \in \omega \} \subseteq A \) such that

For strongly almost disjoint families of subsets of \(\omega_1 \) the situation is more complicated. In [5] it was proven, assuming \(MA_{\omega_1} \), that certain strongly almost disjoint families admit nice families of partial transversals. In this note, we refine that result to obtain:

Theorem 5. Assume \(MA_{\omega_1} \). Then any strongly almost disjoint family \(A \) such that \(|A| = \omega_1 \) consisting of infinite sets of size \(\leq \aleph_1 \) admits a \(\sigma \)-transversal. Moreover, under the additional assumption that each \(a \in A \) is covered by \(A \setminus \{ a \} \), then \(A \) admits a covering \(\sigma \)-transversal.

Proof. The proof is similar to the result from [5] mentioned above. For completeness sake we give a full proof. First note that we may assume that \(A \) is a family of subsets of \(\omega_1 \). We need the following lemma about strongly almost disjoint families:

Lemma 6. Suppose that \(\{ a_\alpha : \alpha < \omega_1 \} \) is a strongly almost disjoint family of sets. Suppose also that \(\{ p_\alpha : \alpha < \omega_1 \} \) is a sequence of pairwise disjoint finite sets. Then there are \(\alpha < \beta \) such that \(p_\alpha \cap a_\beta = \emptyset \) and \(p_\beta \cap a_\alpha = \emptyset \).

Proof. By going to a subsequence, we may assume that there is \(n \in \omega \) such that \(|p_\alpha| = n \) for all \(\alpha \). Let \(M \) be a countable elementary submodel of a suitably large \(H(\theta) \) containing everything relevant and let \(\gamma = M \cap \omega_1 \).

Claim 7. There are \(\{ \alpha_i : i < n + 1 \} \subseteq \gamma \) and a \(\beta > \gamma \) such that

\[
\left(\bigcup_{i < n+1} p_{\alpha_i} \right) \cap a_\beta = \emptyset.
\]

Proof. If not, then for each \(\beta > \gamma \) there are at most \(n \) \(\alpha \)'s below \(\gamma \) such that \(p_\alpha \cap a_\beta = \emptyset \). Thus, there is a \(\alpha_\beta < \gamma \) such that \(p_\alpha \cap a_\beta \neq \emptyset \) for each \(\alpha \in M \setminus \alpha_\beta \). Choose \(\{ \beta_i : i < n + 1 \} \subseteq \omega_1 \setminus \gamma \). Choose an index \(\alpha \in M \) above \(\{ \alpha_\beta_i : i < n + 1 \} \) such that \(p_\alpha \) is disjoint from the following finite set:

\[
\bigcup_{0 \leq i < j < n+1} (a_\beta_i \cap a_\beta_j) \cap M.
\]

Then for \(i < n + 1 \) we have that \(p_\alpha \cap a_\beta_i \neq \emptyset \) and the family \(\{ p_\alpha \cap a_\beta_i : i < n + 1 \} \) is pairwise disjoint. This contradicts that \(|p_\alpha| = n \).

To complete the proof of the main lemma, note that by elementarity \(a_\alpha \cap a_\alpha \subseteq M \) for each \(i \neq j \) and \(p_\beta \cap M = \emptyset \) since \(\beta \notin M \) and the \(p_\alpha \)’s are pairwise disjoint. By the pigeon-hole argument just presented in the proof of Claim 7 we may conclude that \(p_\beta \cap a_\alpha_i = \emptyset \) for some \(i < n + 1 \).
Returning now to the proof of the theorem we need to find sets \(A_n \) and \(X_n \) satisfying (1)–(3) of Definition \(4 \) and, assuming that each \(a \in A \) is covered by the rest of \(A \), also

(4) \(\bigcup \{ X_n : n \in \omega \} = \bigcup A \).

Let \((M_\alpha : \alpha < \omega_1) \) be a continuous \(\in \)-chain of countable elementary submodels of a suitably large \(H(\theta) \) containing everything relevant. For each \(a \in A \), let \(\alpha \) be minimal such that \(a \in M_\alpha \). Let \(a' = a \cap M_\alpha \). (To obtain (1)–(3) the elementary submodels are not needed, and it suffices to take \(a' \in [a]^{\aleph_0} \). Elementarity will be used to obtain (4).)

Now define the poset \(P \) to be the set of all pairs \(p = (x_p, F_p) \), where \(x_p \in [\omega_1]^<\omega \) and \(F_p \in [A]^{<\omega} \) with the property that \(|x_p \cap a'| = |x_p \cap a| = 1 \) for all \(a \in F_p \). We define \(p \leq q \) if \(x_q \subseteq x_p \) and \(F_q \subseteq F_p \).

Claim 8. \(P \) has the ccc.

Proof. Given an uncountable subset \(\{ (y_\alpha, G_\alpha) : \alpha \in \omega_1 \} \), we may assume that the \(y_\alpha \)'s form a \(\Delta \)-system with root \(r \). Let \(x_\alpha = y_\alpha \setminus r \). We may also assume that the \(G_\alpha \)'s form a \(\Delta \)-system with root \(R \). Let \(F_\alpha = G_\alpha \setminus R \). By going to a subsequence we may assume that \(x_\alpha \cap \bigcup \{ a' : a \in R \} = \emptyset \) for each \(\alpha \). Thus, for each \(a \in R \), \(y_\alpha \cap a' = r \cap a' \). Thus, if we let \(a_\alpha = \bigcup F_\alpha \) it follows that \((y_\alpha, G_\alpha) \) is compatible with some \((y_\beta, G_\beta) \) if and only if \(x_\alpha \cap a_\beta = \emptyset = x_\beta \cap a_\alpha \). The existence of such a pair is given by Lemma \(\text{[6]} \).

To finish the proof, let \(P^\omega \) denote the finite support product of countably many copies of \(P \). Consider the following subsets of \(P^\omega \):

\[D_\alpha = \{ p \in P^\omega : \exists n \ a \in F_{p(n)} \} \]

It is easy to show that \(D_\alpha \) is dense for each \(a \in A \). By \(MA_{\omega_1} \), we may let \(G \) be a \(\{ D_\alpha : a \in A \} \)-generic filter. Let \(X_\alpha = \bigcup \{ x_{p(n)} : p \in G \} \) and \(A_\alpha = \bigcup \{ F_{p(n)} : p \in G \} \). Then \(\bigcup A_\alpha = A \) by genericity of \(G \), and the rest of (1)–(3) easily follows from the definition of the partial order.

In order to obtain (4) assume now that each \(a \) is covered by \(A \setminus \{ a \} \). It suffices to show that for each \(\alpha \in \bigcup A \) the following set is dense:

\[E_\alpha = \{ p \in P^\omega : \exists \alpha' a \in p_{(n)} \} \]

Note that \(E_\alpha \) is dense if \(a \in a' \) for some \(a \in A \). To see this, consider any \(a \in A \) and any \(\alpha \in a \). Let \(\beta \) be such that \(\alpha \in M_{\beta+1} \setminus M_\beta \). If \(a \notin M_\beta \), it follows that \(\alpha \in a' \). So assume that \(a \in M_\beta \). Since \(a \) is covered by \(A \setminus \{ a \} \), there is a \(b \in A \) such that \(b \neq a \) and \(\alpha \in b \). Now it suffices to observe that \(b \notin M_\beta \). For if \(b \in M_\beta \), then, since \(a \cap b \) is finite, by elementarity it would follow that \(a \cap b \subseteq M_\beta \), which is impossible. \(\square \)

Remarks. (1) Note that the natural poset for producing a partial transversal is not necessarily ccc: the natural poset being the collection of pairs \((x, F)\) where \(x \) is a finite subset of \(\bigcup A \) and \(F \) is a finite subset of \(A \) with the property that \(|x \cap a| = 1 \) for each \(a \in F \) with the ordering of reverse inclusion on both coordinates. If \(A \) contains an uncountable element \(a \), then this poset is not ccc. Indeed, the collection of pairs \(\{ (\beta), \{ a \} \} \), where \(\beta \in a \), is an uncountable antichain.

(2) The only place where the elementary submodels played a role in the proof is in order to get the \(\sigma \)-transversal to be covering. Otherwise it would have sufficed to choose \(a' \in [a]^{\aleph_0} \) arbitrary. Thus, we obtain as a corollary to the proof of Theorem \(\text{[5]} \) that \(MA_\alpha \) implies \(M(\kappa, \kappa, \omega) \rightarrow \sigma - B(2) \). The restriction on \(\kappa = \omega_1 \) to get the covering \(\sigma \)-transversal is necessary (see Theorem \(\text{[4]} \) below).
Now we show that the assumption of MA in Theorem 5 is necessary.

Theorem 9. Assume \Diamond. Then $M(\omega_1, \omega, \omega) \not\models B(\aleph_0)$.

Proof. Let $\{D_\alpha : \alpha < \omega_1\}$ be a \Diamond-sequence for subsets of $\omega_1 \times \omega$. So each D_α is a subset of $\alpha \times \omega$ and for any countable family $\{X_n : n \in \omega\}$ of subsets of ω_1, there are stationary many α for which $\bigcup\{(X_n \cap \alpha) \times \{n\} : n \in \omega\} = D_\alpha$. For each n let $D_\alpha(n) = \{\beta < \alpha : (\beta, n) \in D_\alpha\}$. For each limit $\alpha \in \omega_1$ choose an ω-sequence a_α cofinal in α such that $a_\alpha \cap D_\alpha(n)$ is infinite whenever $D_\alpha(n)$ is cofinal in α. Moreover, if there is a β such that $D_\alpha(n) \subseteq \beta$ whenever $D_\alpha(n)$ is boundable in α, then take β_α to be the least such β, and choose a_α such that $a_\alpha \cap \beta_\alpha = \emptyset$. Then $A = \{a_\alpha : \alpha \in \omega_1\}$ is an almost disjoint family in $[\omega_1]\omega$.

Suppose that A admits families $\{X_n : n \in \omega\}, \{A_n : n \in \omega\}$ such that for each $a_\alpha \in A_n$, we have that $a_\alpha \cap X_n$ is finite and nonempty. Some of the X_α's may be countable, and we may let β be an upper bound for all those countable X_α's. If X_n is uncountable, let E_n be the club set of limit α's for which X_n is cofinal in α. We may fix $\alpha > \beta$ in $\bigcap E_n$ such that $X_n \cap \alpha = D_\alpha(n)$ for every n. It follows that $D_\alpha(n)$ is cofinal in α whenever X_n is uncountable; otherwise $D_\alpha(n)$ is boundable below β.

Fix n such that $a_n \in A_n$. Then, if X_n is countable, by choice of a_n, we have that $a_\alpha \cap X_n$ is empty. So X_n must be uncountable. Thus, $X_n \cap \alpha$ is cofinal in α, and by the choice of a_α, we have that $a_\alpha \cap X_n$ is infinite. Contradiction. □

While some extra set-theoretic assumption is needed to obtain σ-transversals of strongly almost disjoint families of subsets of ω_1, if we make some additional almost-disjointness restrictions on the families, we can obtain ZFC results. Namely, for any $r < \omega$, any r-almost disjoint family admits a σ-transversal. As a corollary to the proof we will also obtain the fact that any point-countable almost disjoint family admits a σ-transversal (Corollary 11 below).

Theorem 10. $M(\kappa, \eta, r) \rightarrow \sigma - B(2)$ for every infinite κ, η and every $r < \omega$.

Proof. We prove by induction on $|A|$ that something stronger than A admits a σ-transversal. Namely:

(IH)$_\kappa$: For every r-almost disjoint family B of cardinality κ, if $B = \bigcup B_n$, then there is $\{X_n : n, k \in \omega\}$ and $\{B_{nk} : n, k < \omega\}$ such that

(a) $\{X_n : n, k \in \omega\}, \{B_{nk} : n, k < \omega\}$ is a σ-transversal of B,

(b) $B_{nk} \subseteq B_n$ for every n and $k \in \omega$, and

(c) $\{X_n : n, k \in \omega\}$ is a point-finite family.

We will refer to such a family of sets as a point-finite σ-transversal refining $\{B_n : n \in \omega\}$.

It is easy to see that (IH)$_{\aleph_0}$ holds.

Assume that A is r-almost disjoint, $A = \bigcup A_n, |A| = \kappa$ and (IH)$_\lambda$ holds for all $\lambda < \kappa$. First note that there is a set S of cardinality κ such that $\{a \setminus S : a \in A\}$ is a disjoint family. Thus, we may assume that $A \subseteq P(\kappa)$. Moreover, it suffices to find the appropriate point-finite σ-transversal for the subsets $A_0 = \{a \in A : |a| = \kappa\}$ and $A_1 = \{a \in A : |a| < \kappa\}$ (putting them together gives the required point-finite σ-transversal for A). Therefore we may assume that either $|a| = \kappa$ for every $a \in A$ or $|a| < \kappa$ for every $a \in A$.

Case 1: κ is a successor λ^+. Let $\{M_\alpha : \alpha < \kappa\}$ be a continuous \in-chain of elementary submodels of a suitably large $H(\theta)$ each of cardinality λ such that M_0 contains everything relevant and such that $A \subseteq \bigcup \{M_\alpha : \alpha < \kappa\}$.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
Subcase 1: $A \subseteq [\kappa]^<\kappa$. Thus, it follow that

(d) for each $\alpha \in \kappa$ and $a \in A \cap M_\alpha$, $a \subseteq M_\alpha$.

Also, since A is r-almost disjoint, we have that

(e) for each $\alpha \in \kappa$ and $a \in A \setminus M_\alpha$ $|a \cap M_\alpha| < \omega$.

Indeed this intersection must be of cardinality less than r. This follows by elementarity: For if $x \in [a \cap M_\alpha]^r$, then x is an element of M_α and the set of $a \in A$ such that $x \subseteq a$ is of cardinality κ. Contradiction.

We construct, by recursion on $\alpha < \kappa$, sets $X^\alpha_{nk} \subseteq \kappa \cap M_\alpha$ and $A^\alpha_{nk} \subseteq A \cap M_\alpha$ for each $n, k < \omega$ so that

(f) $\{X^\alpha_{nk} : n, k \in \omega\}, \{A^\alpha_{nk} : n, k < \omega\}$ is a σ-transversal of $A \cap M_\alpha$,

(g) $A^\alpha_{nk} \subseteq A \cap M_\alpha$ for every n and $k \in \omega$, and

(h) $\{X^\alpha_{nk} : n, k \in \omega\}$ is a point-finite family.

(i) If $\beta < \alpha$, then $X^\alpha_{nk} \cap M_\beta = X^\beta_{nk}$ and $A^\alpha_{nk} \cap M_\beta = A^\beta_{nk}$ for all $n, k \in \omega$.

First note that if such a sequence is constructed, then $X_{nk} = \bigcup_{\alpha < \kappa} X^\alpha_{nk}$, and $A_{nk} = \bigcup_{\alpha < \kappa} A^\alpha_{nk}$ defines the required point-finite σ-transversal refining $\{A_n : n \in \omega\}$.

If α is a limit we define $X^\alpha_{nk} = \bigcup_{\beta < \alpha} X^\beta_{nk}$ and $A^\alpha_{nk} = \bigcup_{\beta < \alpha} A^\beta_{nk}$. Then by (i) all the inductive hypotheses are preserved.

So suppose that $\alpha < \kappa$ is given and X^α_{nk} and A^α_{nk} have been constructed satisfying (f), (g), (h) and (i). For each finite $x \subseteq \omega$ let

$$A_{x,n}^{\alpha+1} = \{a \in A_n \cap (M_{\alpha+1} \setminus M_\alpha) : x = \{k \in X^\alpha_{nk} \neq \emptyset\}\}.$$

By (e) and (h) we have that

$$A_n \cap (M_{\alpha+1} \setminus M_\alpha) = \bigcup \{A_{x,n}^{\alpha+1} : x \in [\omega]^\omega\}.$$

By our inductive hypotheses we may find sets $Y_{x,n,i}^{\alpha+1}$ and $A_{x,n,i}^{\alpha+1}$ forming a point-finite σ-transversal refining $\{A_{x,n}^{\alpha+1} : n \in \omega, x \in [\omega]^\omega\}$. For each i, x, n choose $k_{i,x,n}$ such that

(k) $k_{i,x,n} \notin x$,

(l) $k_{i,x,n} \neq k_{j,y,n}$ whenever $(i, x) \neq (j, y)$.

Now, let

$$A_{nk_{i,x,n}}^{\alpha+1} = A^\alpha_{nk_{i,x,n}} \cup A_{x,n,i}^{\alpha+1}$$

and

$$X_{nk_{i,x,n}}^{\alpha+1} = X^\alpha_{nk_{i,x,n}} \cup Y_{x,n,i}^{\alpha+1}$$

for each $i, n \in \omega$ and each finite $x \subseteq \omega$. If k is not of the form $k_{i,x,n}$, let

$$A_{nk}^{\alpha+1} = A^\alpha_{nk}$$

and

$$X_{nk}^{\alpha+1} = X^\alpha_{nk}.$$

It is straightforward to check that the inductive hypotheses (f), (g), (h) and (i) are preserved: (h) follows from the way the family of $X^\alpha_{nk}^{\alpha+1}$’s are constructed from two point-finite families. (g) and (i) are directly from construction. To see (f), fix $a \in A \cap M_{\alpha+1}$. If $a \in M_\alpha$, then there is n, k such that $a \in A^\alpha_{nk}$. And since $|a \cap X_{nk}^{\alpha} | = 1$ and $a \subseteq M_\alpha$ and $X_{nk}^{\alpha+1} \cap M_\alpha = X_{nk}^{\alpha}$, it follows that $|a \cap X_{nk}^{\alpha+1} | = 1$.

In the case that $a \in M_{\alpha+1} \setminus M_\alpha$, first note by (j) that there is an x such that $a \in A_{x,n,i}^{\alpha+1}$. Also, by choice of the $A_{x,n,i}^{\alpha+1}$’s, there is an i such that $a \in A_{x,n,i}^{\alpha+1}$. Thus,
a ∈ A^α+1_{\kappa^{n}k_{i,x,n}}. Moreover, |a ∩ Y^{\alpha+1}_{nk_{i,x,n}}| = 1 and a ∩ X^{\alpha}_{nk_{i,x,n}} = ∅ by choice of k_{n,x,i}.
Thus, |a ∩ X^{\alpha+1}_{nk_{i,x,n}}| = 1, as required.

This completes the construction in the case that A ⊆ [κ]^<κ.

Subcase 2: A ⊆ [κ]^κ. The proof in this case is almost identical. One builds by recursion on α < κ the same families \{X^{\alpha}_{nk} : n, k ∈ ω\} and \{A^{\alpha}_{nk} : n, k ∈ ω\).
At stage α of the construction, it suffices to note that a' = a \bigcup (A ∩ M_α) has cardinality κ for each a ∈ M_{α+1} \ M_α. Therefore, working with the sets
\[A^{\alpha+1}_{k,n} = \{a' : a ∈ A_n \cap (M_{α+1} \setminus M_α) \text{ and } x = \{k : a ∩ X^{\alpha}_{nk} = ∅\}\}, \]
the rest of the proof is identical to the previous case.

This completes the case that κ is a successor. □

Limit case cf(κ) = ω. This case is almost trivial. Fix an ε-chain \{M_m : m < ω\} of elementary submodels of a suitably large H(θ) each of size < κ such that M_0 contains everything relevant and A ⊆ ∪\{M_m : m < ω\}. For each m fix A^m_{n}’s and \{X^{m}_{nk}\}’s forming the required point-finite σ-transversal of \{A_n ∩ M_m \setminus M_{m-1} : n ∈ ω\} so that each X^{m}_{nk} ⊆ M_m \ M_{m-1}. Then \{X^{m}_{nk} : m, k, n < ω\} is point-finite and thus the required σ-transversal of \{A_n : n ∈ ω\}.

Limit case cf(κ) is uncountable. Let \{M_α : α < cf(κ)\} be an ε-chain of elementary submodels of a suitably large H(θ) each of cardinality < κ such that M_0 contains everything relevant, for each α |M_α| < |M_{α+1}|, and A ⊆ ∪\{M_α : α < cf(κ)\}. Let A_0 = \{a ∈ A : if a ∈ M_α, then |a| ≤ |M_α|\} and let A_1 = A \ A_0. As in the successor case, we may assume that either A = A_0 or A = A_1. The proof is now almost identical to the successor case. In the case that A = A_0, we have that the key property (d) holds, and we proceed as in Subcase 1. In the case that A = A_1, we proceed as in Subcase 2.

From the proof of Theorem 10 we obtain the following corollary.

Corollary 11. Assume that A is a point-countable strongly-almost disjoint family consisting of sets of size ≥ ω. Then A admits a σ-transversal.

Proof. Following the proof of Theorem 10 the key fact is clause (e). However, in the case that A is point-countable, we even have that a ∩ M_α = ∅ if a ∉ M_α. □

3. σ-T RANSVERSALS COV ERING THE UNDERLYING SET

Towards generalizing Sierpiński’s Theorem 5 we have the following.

Theorem 12. Suppose that A ⊆ [ω]^ω is a 2-almost disjoint, point-countable family of size ℵ_1 with the property that for each a ∈ A, A \ \{a\} covers a. Then there is a σ-transversal \{X_n : n ∈ ω\}, \{A_n : n ∈ ω\} such that \{X_n : n ∈ ω\} covers \bigcup A.

Proof. Let \{M_α : α < ω_1\} be a continuous ε-sequence of countable elementary submodels of a suitably large H(θ) such that A ∈ M_0. Let A ∩ M_0 = \{a^0_n : n ∈ ω\}. For each n let X^\beta_n = a^0_n ∩ M_0 and let A^\beta_n = \{a ∈ M_0 ∩ A : |a ∩ a^0_n| = 1 and a ∉ A^0_k for any k < n\}. By our assumptions and by elementarity we have
(a) \bigcup X^\beta_n = (\bigcup A) ∩ M_0,
(b) for each \xi ∈ X^\beta_n there is a ∈ A^\beta_n such that a ∩ X^\beta_n = \{\xi\}.
Suppose X^\beta_n and A^\beta_n have been constructed for each \beta < α and each n ∈ ω such that the following inductive hypotheses are satisfied:

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
(c) \(\bigcup \{ X^\beta_n : n \in \omega \} = \bigcup A \cap M_\beta \),
(d) for each \(a \in A^\alpha_n \), \(|a \cap X^\beta_n| = 1 \),
(e) for each \(\xi \in X^\beta_n \) there is \(a \in A^\alpha_n \) such that \(a \cap X^\beta_n = \{ \xi \} \),
(f) for \(\beta < \gamma < \alpha \), \(X^\beta_n \subseteq X^\gamma_n \) and \(A^\beta_n \subseteq A^\gamma_n \).
(g) \(A \cap M_\beta = \bigcup_n A^\beta_n \).
(h) \(A^\alpha_n \cap A^\alpha_m = \emptyset \) for all \(m \not\in n \).

If \(\alpha \) is a limit, we let \(X^\alpha_n = \bigcup_{\beta < \alpha} X^\beta_n \) and \(A^\alpha_n = \bigcup_{\beta < \alpha} A^\beta_n \). The inductive hypotheses are preserved.

If \(\alpha = \beta + 1 \), enumerate \(M_\alpha \cap A \) as \(\{ a^\alpha_n : n \in \omega \} \) such that if \(a^\alpha_n \in M_\beta \cap A^\beta_k \), then \(n \neq k \). For each \(n \) let
\[
(a^\alpha_n)' = \left[a^\alpha_n \setminus \left(A \cap M_\beta \setminus \{ a^\alpha_n \} \right) \right] \cap M_\alpha \subseteq M_\alpha \setminus M_\beta
\]
and let
\[
X^\alpha_n = X^\beta_n \cup (a^\alpha_n)'.
\]

Finally, let
\[
A^\alpha_n = A^\beta_n \cup \{ a \in A \cap M_\alpha \setminus M_\beta : |a \cap X^\alpha_n| = 1 \text{ and } a \not\in A^\alpha_k \text{ for any } k < n \}.
\]

It remains to verify the inductive hypotheses:

(c) is easy but the only nontrivial case: if \(\xi \in \bigcup A \cap M_\alpha \setminus M_\beta \), fix \(a^\alpha_n \in A \) such that \(\xi \in a^\alpha_n \). If \(a^\alpha_n \in M_\beta \), then since \(A \) is strongly almost disjoint, by elementarity, \(a^\alpha_n \) is the only element of \(M_\beta \) containing \(\xi \). Thus, \(\xi \in (a^\alpha_n)' \). If \(a^\alpha_n \not\in M_\beta \) and \(\xi \not\in (a^\alpha_n)' \), then there must be \(a \in A \cap M_\beta \) such that \(\xi \in a \). But this \(a \) is enumerated as some \(a^\alpha_n \) and as in the previous case we would have \(\xi \in (a^\alpha_n)' \).

(d), (f), (g), and (h) follow by construction.

(e) follows from point-countable and the assumption that each \(a \) is covered by \(A \setminus \{ a \} \); to see this, fix \(\xi \in X^\alpha_n \). We may assume that \(\xi \in (a^\alpha_n)' \) and that \(\xi \not\in M_\beta \).
By assumption there is \(a \in A \setminus \{ a^\alpha_n \} \) such that \(\xi \in a \). By elementarity this \(a \) may be taken from \(M_\alpha \), and by definition of \((a^\alpha_n)' \) we have that \(a \not\in M_\beta \). By point countable, we know that \(a \cap M_\beta = \emptyset \). Thus, \(a \cap X^\beta_n = \emptyset \), and since \(A \) is 2-almost disjoint we have that \(|a \cap (a^\alpha_n)'| = 1 \). Thus, \(|a \cap X^\alpha_n| = 1 \), as required. \(\Box \)

Corollary 13 (Sierpiński). \(\omega_1 \times \omega_1 \) can be covered by countably many functions and their inverses.

Proof. Let \(A \) be the collection of rows and columns of \(\omega_1 \times \omega_1 \). Then \(A \) satisfies the hypotheses of Theorem 12. Let \(\{ X_n, A_n : n \in \omega \} \) be the \(\sigma \)-transversal that covers \(\omega_1 \times \omega_1 \). For each \(n \) let \(f_n : \omega_1 \rightarrow \omega_1 \) be defined so that if \(\{ \alpha \} \times \omega_1 \in A_n \) and \((\alpha, \gamma) \in X_n \), then \(f_n(\alpha) = \gamma \). Also, let \(g_n : \omega_1 \rightarrow \omega_1 \) be such that if \(\omega_1 \times \{ \alpha \} \in A_n \) and \((\beta, \alpha) \in X_n \), then \(g_n(\alpha) = \beta \). Since \(\{ X_n : n \in \omega \} \) covers \(\omega_1 \times \omega_1 \) it follows that the functions \(\{ f_n : n \in \omega \} \) and the inverses \(\{ g_n^{-1} : n \in \omega \} \) cover \(\omega_1 \times \omega_1 \) as well. \(\Box \)

Theorem 14 (Kuratowski). The family of rows and columns of \(\omega_2 \times \omega_2 \) does not admit a covering \(\sigma \)-transversal. Moreover, no \(\sigma - B(\mathbb{N}_1) \) family can be covering.

Proof. Recall that \(\omega_2 \times \omega_2 \) cannot be covered by countably many functions and inverses of functions (see [7]). If \(\{ X_n : n \in \omega \} \) were a \(\sigma - B(\mathbb{N}_1) \) family, wlog we can assume that for each \(n \), \(X_n \) either intersects every column in a countable set, or intersects every row in a countable set. So, each \(X_n \) can either be covered by a countable family of functions, or a countable family of inverses of functions. Contradiction. \(\Box \)
Example. Consider the Σ-product of ω_1 many copies of ω_1 with the discrete topology. For each $f \in X$ and each $\alpha \in \omega_1$, let

$$A_{f\alpha} = \{g \in X : g(\alpha) \neq 0 \text{ and } g(\beta) = f(\beta) \text{ for } \beta \neq \alpha\}.$$

It is easy to see that the $A_{f\alpha}$’s form a point-countable 2-almost disjoint family. Thus, by Theorem 12 for any family Y of \aleph_1-many f’s in X, there is a covering σ-transversal of the family $\{A_{f\alpha} : f \in Y, \alpha \in \omega_1\}$. In particular, if CH is assumed, then the whole space X admits a covering σ-transversal.

4. Open problems

It follows from Kuratowski’s example that the assumption that $|A| \leq \omega_1$ in Theorem 12 (as well as Theorem 5) is necessary. However, we do not know if the other assumptions are also necessary.

Question 1. Given a point-countable strongly almost disjoint family $A \subseteq [\omega_1]^{<\aleph_1}$ of size \aleph_1 such that for each $a \in A$, $A \setminus \{a\}$ covers a, is there a σ-transversal $\{X_n : n \in \omega\}$ covering $\bigcup A$?

Question 2. Given a 2-almost disjoint family $A \subseteq [\omega_1]^{<\aleph_1}$ of size \aleph_1 such that for each $a \in A$, $A \setminus \{a\}$ covers a, is there a σ-transversal $\{X_n : n \in \omega\}$ covering $\bigcup A$?

Another basic question left open is what can be said about strongly almost disjoint families of size 2^{\aleph_0}. Theorem 9 implies that $M(2^{\aleph_0}, \omega, \omega) \not\rightarrow \sigma - \Sigma B(\aleph_0)$ is consistent.

Question 3. Is it consistent that $M(2^{\aleph_0}, \omega, \omega) \rightarrow \sigma - B(\aleph_0)$?

The existence of σ-Bernstein sets seems significantly weaker than the existence of Bernstein sets. Indeed, for κ any cardinal, any countable point-separating family of subsets of κ is a σ-Bernstein set for $\{X \in P(\kappa) : |X| > 1\}$. Thus,

Proposition 15. For any X of cardinality at most 2^{\aleph_0}, the collection of nonsingleton subsets of X admits a σ-Bernstein set. Thus, $M(2^{\aleph_0}, \omega, \omega) \rightarrow \sigma - B$.

There are families of sets with no σ-Bernstein set. An interesting example comes from a measurable cardinal.

Example 16. Let κ be a measurable cardinal. If u is a countably complete ultrafilter on κ, then u does not admit a σ-Bernstein set.

Proof. Indeed if u is such an ultrafilter, and $\{X_n : n \in \omega\}$ is any family of subsets of κ, then for each n either X_n or its complement is in u. By countable completeness, there is an $X \in u$ such that $X \subseteq X_n$ or $X \cap X_n = \emptyset$ for every n. I.e., u has no σ-Bernstein set.

However, large cardinals are not needed to get an example.

Proposition 17. If $cf(\kappa) > 2^{\aleph_0}$, then $[\kappa]^\kappa$ has no σ-Bernstein set. If in addition $2^\kappa = \kappa^+$, then there is an almost disjoint family $A \subseteq [\kappa]^\kappa$ with no σ-Bernstein set.

Proof. Consider a countable collection $X = \{X_n : n \in \omega\}$ of subsets of κ. Let $B \in [\kappa]^\kappa$. For each $a \in B$, let $a_n = \{n : a \in X_n\}$. Since $cf(\kappa) > 2^{\aleph_0}$, there is $a \subseteq \omega$ and $A \in |B|^\kappa$ such that, for each $a \in A$, $a \in X_n$ if and only if $n \in a$. Therefore A is either contained in or disjoint from each X_n. Thus, $[\kappa]^\kappa$ has no σ-Bernstein set.

Moreover, if we assume $2^\kappa = \kappa^+$, we may first enumerate all countable collections...
of subsets of κ as $\{X_\alpha : \alpha \in \kappa^+\}$. Then let $\{B_\alpha : \alpha \in \kappa^+\} \subseteq [\kappa]^\kappa$ be an almost disjoint family. By the above argument, we may find $A_\alpha \in [B_\alpha]^\kappa$ such that A_α is not split by any member of X_α. Thus, $\{A_\alpha : \alpha \in \kappa^+\}$ has no σ-Bernstein set.

We can contrast this with the result from [3] that if S is a stationary subset of some λ and $\Diamond(S)$ holds, then for any family $\{A_\alpha : \alpha \in S\}$ such that each $A_\alpha \subseteq \omega$ is infinite, there are $B_\alpha \subseteq A_\alpha$ such that the family $\{B_\alpha : \alpha \in S\}$ has no Bernstein set. Moreover, it was shown consistent that there is a strongly almost disjoint family $A \subseteq [\omega_{\omega+1}]^\omega$ with no Bernstein set. However, it is possible that every strongly almost disjoint family admits a σ-Bernstein set.

Question 4. Does $M(\kappa, \lambda, \omega) \rightarrow \sigma - B$ for all κ and λ?

Given a topological space X, a Bernstein set for X is a $B \subseteq X$ that intersects each copy of the Cantor set in X but does not contain any copies of the Cantor set. It was proven by Weiss [11] and Bregman, Šapirovskij and Sostak [1] that it is consistent that every topological space admits a Bernstein set. Whether any extra assumptions are needed to prove this was open until Shelah’s recent construction [9]. It would be of interest to see if one can prove under weaker set-theoretic assumptions (or even ZFC) that every topological space admits a σ-Bernstein set.

References

1 Neil Rogers has shown that $\Diamond(\omega_2)$ implies that there is an almost disjoint family $A \subseteq [\omega_2]^{\aleph_0}$ which does not admit a σ-Bernstein set [8]. So the answer to Question 4 is consistently no for $\kappa = \omega_2$ and $\lambda = \omega_0$.