ON THE POLES OF THE RESOLVENT IN CALKIN ALGEBRA

O. BEL HADJ FREDJ

(Communicated by Joseph A. Ball)

Abstract. In the present note, we study the problem of lifting poles in Calkin algebra on a separable infinite-dimensional complex Hilbert space H. We show by an example that such lifting is not possible in general, and we prove that if zero is a pole of the resolvent of the image of an operator T in the Calkin algebra, then there exists a compact operator K for which zero is a pole of $T + K$ if and only if the index of $T - \lambda$ is zero on a punctured neighbourhood of zero. Further, a useful characterization of poles in Calkin algebra in terms of essential ascent and descent is provided.

1. Introduction

Throughout this note, $\mathcal{L}(H)$ will denote the algebra of all bounded operators on a separable infinite-dimensional complex Hilbert space H and $\mathcal{K}(H)$ its ideal of compact operators. For $T \in \mathcal{L}(H)$, write T^* for its adjoint, ker(T) for its kernel and ran(T) for its range.

Let A be a unital complex Banach algebra. The spectrum of an element $x \in A$ is denoted by $\sigma(x, A)$, or simply $\sigma(x)$ when no confusion is possible. It is a classical fact that zero is an isolated point of $\sigma(x)$ if and only if there exists an idempotent e that commutes with x and for which $\sigma(exe; eAe) = \{0\}$ and $\sigma((1 - e)x(1 - e); (1 - e)A(1 - e)) = \sigma(x) \setminus \{0\}$; see for instance [4].

For a bounded linear operator $T \in \mathcal{L}(H)$, the ascent, $a(T)$, and the descent, $d(T)$, are defined by $a(T) = \inf\{n \geq 0 : \ker(T^n) = \ker(T^{n+1})\}$ and $d(T) = \inf\{n \geq 0 : \ran(T^n) = \ran(T^{n+1})\}$, respectively; the infimum over the empty set is taken to be ∞. In the case of a Banach algebra A, the ascent and the descent of an element x are defined to be respectively the ascent and the descent of the corresponding left multiplication operator L_x given by $L_x(y) = xy$. It is well known that x is of finite ascent and descent if and only if zero is a pole of the resolvent of x, and in this case, the order of the pole is $d := a(x) = d(x)$; see [12, Theorem 2.1].

From [7] we recall that an operator $T \in \mathcal{L}(H)$ is said to be Fredholm if $\dim \ker(T)$ and $\dim \ran(T)$ are both finite, or equivalently $\pi(T)$ is invertible in the Calkin algebra $\mathcal{C}(H) := \mathcal{L}(H)/\mathcal{K}(H)$ where $\pi : \mathcal{L}(H) \to \mathcal{C}(H)$ is the quotient map. Notice that the range of such operators is closed; see [7].
In [14], Olsen proved that if \(T \) is such that \(p(\pi(T)) = 0 \), where \(p \) is a non-zero complex polynomial, then there exists a compact operator \(K \) satisfying \(p(T + K) = 0 \). The problem of lifting an element in a class of \(\mathcal{L}(H) \) to an element in the same class of \(\mathcal{L}(H) \) has interested many mathematicians ([14], [2], [1], [8]), and several results are known in this direction. For instance, we mention that for the class of idempotents, it is established that \(\pi(E(\mathcal{L}(X))) = E(\mathcal{C}(X)) \) where \(X \) is a Banach space and \(E(\mathcal{L}(X)) \) (resp. \(E(\mathcal{C}(X)) \)) denotes the set of idempotent elements of \(\mathcal{L}(X) \) (resp. \(\mathcal{C}(X) \)), [2]. In this note we are motivated by the following question: Let \(T \) be an operator such that zero is a pole of the resolvent of \(\pi(T) \). Is there a compact operator \(K \) for which zero is a pole of the resolvent of \(T + K \)? As will be showed by an example, the answer to this question is generally negative. However, we prove that for such an operator \(T \), there exists a compact operator \(K \) such that \(T + K = A \oplus B \) where \(A \) is nilpotent and \(B \) is Fredholm. Furthermore, we give a necessary and sufficient condition such that \(K = 0 \).

2. Poles in Calkin algebra

As mentioned above, the following example shows that lifting of poles in the Calkin algebra is not possible in general.

Example 2.1. Let \(S \) be the unilateral left shift operator given on the Hilbert space \(\ell^2(\mathbb{N}) \) by \(S\epsilon_{i+1} = \epsilon_i \) and \(S\epsilon_1 = 0 \) where \(\{\epsilon_i : i \geq 1\} \) denotes the canonical basis. Consider the operator \(T = 0 \oplus S \) defined on \(H = \ell^2(\mathbb{N}) \oplus \ell^2(\mathbb{N}) \). Then it is clear that \(T - \lambda \) is Fredholm and \(\text{ind}(T - \lambda) = 1 \) whenever \(\lambda \) is in the punctured open unit disk \((0 < |\lambda| < 1)\). Also, because \(T \) has finite descent then so does \(\pi(T) \); see [5]. Consequently, zero is a pole of the resolvent of \(\pi(T) \). However, if there exists a compact operator \(K \) such that zero is a pole of \(T + K \), then \(\text{ind}(T + K - \lambda) = \text{ind}(T - \lambda) = 0 \) for \(0 < |\lambda| < 1 \), a contradiction.

Theorem 2.2. Let \(T \) be a bounded operator on \(H \). Then zero is a pole of the resolvent of \(\pi(T) \) if and only if there exists a compact operator \(K \) such that \(T + K = A \oplus B \) where \(A \) is nilpotent and \(B \) is Fredholm.

Proof. Suppose that zero is a pole of the resolvent of \(\tilde{T} = \pi(T) \) of order \(d \). Then there exists an idempotent \(\tilde{R} \) such that \(\tilde{R}\tilde{T} = \tilde{T}\tilde{R}, \sigma(\tilde{R}\tilde{T}\tilde{R}, \mathcal{R}(H)\tilde{R}) = \{0\} \) and \(\sigma((1 - \tilde{R})\tilde{T}(1 - \tilde{R}), (1 - \tilde{R})\mathcal{C}(H)(1 - \tilde{R})) = \sigma(\tilde{T}) \setminus \{0\} \), [4]. Let \(\lambda \) be a non-zero complex number; then \(\tilde{R}\tilde{T}\tilde{R} - \lambda\tilde{R} \) is invertible in \(\mathcal{R}(H)\tilde{R} \). Moreover, by Corollary 3.3 of [2] we can lift \(\tilde{R} \) to an idempotent \(R \) in \(H \), hence there exists \(S \in \mathcal{L}(H) \) such that \([R(T - \lambda)R][RSR] - R \) and \([RSR][R(T - \lambda)R] - R \) are compact. Therefore it follows easily that \(RTR\mathcal{ran}(R) - \lambda \) is Fredholm and so \(\sigma_e(RTR\mathcal{ran}(R)) = \{0\} \). In the same way we get that \((I - R)T(I - R)\mathcal{ker}(R) \) is Fredholm. On the other hand, because \(\tilde{T} \) has finite descent, we obtain the existence of \(U \in \mathcal{L}(H) \) for which \(\tilde{T}^d = \tilde{T}^{d+1}U \) where \(U = \pi(U) \). Therefore,

\[
(\tilde{R}\tilde{T}\tilde{R})^d = \tilde{R}\tilde{T}^{d+1}\tilde{R} = \tilde{R}\tilde{T}^{d+1}\tilde{R}U\tilde{R} = (\tilde{R}\tilde{T}\tilde{R})^{d+1}(\tilde{R}U\tilde{R}).
\]

Consequently \((RTR)^d - (RTR)^{d+1}(RUR) \) is compact and hence so is its restriction to the invariant subspace \(\mathcal{ran}(R) \). This implies that \(\pi_{\mathcal{ran}(R)}(RTR_{\mathcal{ran}(R)}) \) has finite descent where \(\pi_{\mathcal{ran}(R)} : \mathcal{L}(\mathcal{ran}(R)) \to \mathcal{C}(\mathcal{ran}(R)) \) denotes the quotient map, and since it is quasi-nilpotent in the Calkin algebra \(\mathcal{C}(\mathcal{ran}(R)) \), we obtain by [5, Theorem 2.4] that \(\pi_{\mathcal{ran}(R)}(RTR_{\mathcal{ran}(R)}) \) is nilpotent. Hence, [14, Theorem 2.4] ensures the existence of a compact operator \(K_1 \) on \(\mathcal{ran}(R) \) such that \(RTR_{\mathcal{ran}(R)} + K_1 \) is
nilpotent. Now if we put \(K = RK_1 R - RT(I - R) - (I - R)TR \), then it is easy to verify that \(K \) is compact. Finally \(T + K = A \oplus B \) where \(A = (RTR)_{\text{ran}(R)} + K_1 \) is nilpotent and \(B = (I - R)T(I - R)_{\text{ker}(R)} \) is Fredholm.

Conversely, suppose that there exists a compact operator \(K \) that satisfies \(T + K = A \oplus B \) where \(A^n = 0 \) for some positive integer \(n \) and \(B \) is Fredholm. Then it follows that zero is an isolated point of \(\sigma(T) \), and if we let \(P \) be the projection such that \(P(T + K)P \) is a projection such that \((I - P)(T + K)(I - P) = B \), there exists an operator \(S \in \mathcal{L}(H) \) such that \((I - P) - B(I - P)S(I - P) \) is compact. Hence, \(T^n - T^{n+1}I \) is compact and so \(d(\pi(T)) \) is finite, which implies that zero is a pole of the resolvent of \(\pi(T) \) of order \(d \leq n \).

In the sequel, we shall denote by \(G_0 \) the connected component of the Calkin algebra \(\mathcal{C}(H) \) formed by invertible elements and which contains the identity. It is well known that for every \(\pi(T) \in G_0 \) there exists a compact operator \(K \) such that \(T + K \) is invertible, \([9]\).

Remark. As we have showed in Example 2.1, the lifting of poles in the Calkin algebra is generally not possible. Furthermore, if such a lifting is possible for some pole of \(\pi(T) \), then the index of \(T - \lambda \) is zero in a punctured neighbourhood of the pole. Hence non-zero index constitutes an obstruction for lifting.

Corollary 2.3. Let \(T \) be a bounded operator on \(H \). If \(0 \in \sigma_c(T) \) is a pole of the resolvent of \(\pi(T) \), then the following assertions are equivalent:

(i) there exists a compact operator \(K \in \mathcal{L}(H) \) such that zero is a pole of \(T + K \),

(ii) there exists a \(\delta > 0 \) such that \(\pi(T) - \lambda \in G_0 \) for \(0 < |\lambda| < \delta \),

(iii) there exists a \(\delta > 0 \) such that \(T - \lambda \) is Fredholm of index zero for \(0 < |\lambda| < \delta \).

Proof. (i) \(\Rightarrow \) (ii). Because zero is a pole of the resolvent of \(T + K \), there exists \(\delta > 0 \) such that for \(0 < |\lambda| < \delta \), \(T + K - \lambda \) is invertible and consequently \(\text{ind}(T - \lambda) = \text{ind}(T + K - \lambda) = 0 \).

(ii) \(\Rightarrow \) (i). Since zero is a pole of \(\pi(T) \), Theorem 2.2 ensures the existence of a compact operator \(K_1 \) such that \(T + K_1 = A \oplus B \) where \(A \) is nilpotent and \(B \) is Fredholm. Furthermore, from the fact that \(\text{ind}(T - \lambda) = 0 \) for \(0 < |\lambda| < \delta \) and the continuity of the index, we get that \(\text{ind}(B) = 0 \). Hence \(B + K_2 \) is invertible for some compact operator \(K_2 \). Now it suffices to put \(K = K_1 + (0 \oplus K_2) \).

For (iii) \(\Leftrightarrow \) (ii) see \([9]\).

3. Poles in Calkin Algebra and Essential Ascent and Descent

Before outlining the statement of our results, we need to introduce the following notions.

Following S. Grabiner \([10]\), we associate to every operator \(T \) the following two sequences \(c_n(T) := \dim \ker(T^{n+1})/\ker(T^n) \) and \(c'_n(T) := \dim \text{ran}(T^n)/\text{ran}(T^{n+1}) \).

The **essential ascent** and the **essential descent** are then defined by

\[
a_n(T) = \inf\{n \geq 0 : c_n(T) \text{ is finite}\} \quad \text{and} \quad d_n(T) = \inf\{n \geq 0 : c'_n(T) \text{ is finite}\}.
\]

We mention the following characterizations due to S. Grabiner and J. Zemánek: \([11]\)

\[
(3.1) \quad a_n(T) \text{ is finite } \iff \dim(\text{ran}(T^d) \cap \ker(T)) < \infty \text{ for some } d \geq 0
\]

and

\[
(3.2) \quad d_n(T) \text{ is finite } \iff \text{codim } (\text{ran}(T) + \ker(T^d)) < \infty \text{ for some } d \geq 0.
\]
Theorem 3.1. Let \(T \) be a bounded operator on \(H \). Then zero is a pole of the resolvent of \(\pi(T) \) if and only if there exists a compact operator \(K \) such that \(a_c(T+K) \) and \(d_c(T+K) \) are both finite.

Proof. The direct implication follows immediately from Theorem 2.2. For the converse, assume that \(a_c(T+K) \) and \(d_c(T+K) \) are finite; then Chapter III §22, Theorem 12 provide the existence of two closed subspaces \(M, N \) invariant by \(T+K \) and such that \(H = M \oplus N \) and \(T+K = T_1 \oplus T_2 \) where \(T_1 \) nilpotent and \(T_2 \) Fredholm, as desired.

Remark. In the preceding result, the compact operator \(K \) cannot be chosen to be zero. Indeed, consider the compact operator \(K \) we associate the operator \(P(\pi) \) defined on the Banach space \(\ell^2(\mathbb{N}) \) by \(Ke_n = \frac{1}{n} e_n \); then zero is obviously a pole of the resolvent of \(\pi(K) = 0 \). However, if \(K \) has finite essential ascent and descent, then Theorem 5.3 of [11] will imply that \(\text{ran}(K^d) \) is closed for \(d = a_c(K) = d_c(K) \), a contradiction.

Before stating our next result, we have to recall the following notion introduced by B. N. Sadovskii in [15]; see also Chapter III §17. Let \(\ell^\infty(H) \) denote the Banach space of all bounded sequences of \(H \) equipped by the sup norm and \(m(H) \) its closed subspace consisting of all the sequences \(\{x_n\}_n \) such that \(\{x_n : n \in \mathbb{N}\} \) is totally bounded or equivalently has compact closure in \(H \). To an operator \(T \in \mathcal{L}(H) \) we associate the operator \(P(T) \) defined on the Banach space \(P(H) = \ell^\infty(H) \oplus m(H) \) by \(P(T)(\{x_n\}_n + m(H)) = \{Tx_n\}_n + m(H) \). It is well known that for an operator \(T \in \mathcal{L}(H) \), \(P(T) = 0 \) if and only if \(T \) is compact, and if \(\text{ran}(T) \) is closed, then \(\ker(P(T)) = \ell^\infty(\ker(T)) + m(H) \).

Theorem 3.2. If \(T \in \mathcal{L}(H) \) is an operator such that zero is a pole of the resolvent of \(\pi(T) \) of order \(d \) and \(\text{ran}(T^d) \) and \(\text{ran}(T^{d+1}) \) are closed, then \(d = a_c(T) = d_c(T) \).

Proof. Let \(Q \) be the orthogonal projection on \(\ker(T^{d+1}) \). Then we have
\[
\pi(T^{d+1})\pi(Q) = 0,
\]
and since \(d = a(\pi(T)) \), we obtain that \(\pi(T^d)\pi(Q) = 0 \). On the other hand, since \(\text{ran}(T^d) \) is closed then so is \(\text{ran}(T^dQ) = \text{ran}(T^d) \cap \ker(T) \), and consequently \(\text{ran}(T^d) \cap \ker(T) \) is of finite dimension. Thus, using (3.1), we obtain that \(a_c(T) \leq d \) because \(\ker(T^{d+1})/\ker(T^d) \cong \text{ran}(T^d) \cap \ker(T) \). Moreover, we get by duality that \(\dim \text{ran}(T^d) \cap \ker(T^*) \) is finite and hence so is \(\text{codim} \ (\ker(T^d) + \text{ran}(T)) \). Finally, by (3.2), it follows that \(d_c(T) \) is finite. Now suppose that \(a_c(T) = d_c(T) < d \); then \(\dim \ker(T^d)/\ker(T^{d-1}) \) is finite. Hence by Chapter III §17, Lemma 2, we have \(\ell^\infty(\ker(T^d)) + m(H) = \ell^\infty(\ker(T^{d-1})) + m(H) \), and since \(\text{ran}(T^d) \) is closed, we obtain that \(\ker(P(T^d)) \subseteq \ker(P(T^{d-1})) \). Thus \(\ker(P(T^d)) = \ker(P(T^{d-1})) \). Finally, if \(S \) is an operator such that \(T^dS \) is compact, then so is \(T^{d-1}S \). This shows that \(a(\pi(T)) < d \), the desired contradiction.

Notice that the inverse implication of Theorem 3.2 does not hold in general. In fact, if we consider the compact operator \(K \) given on the Hilbert space \(\ell^2(\mathbb{N}) \) by \(Ke_{2p} = \frac{1}{p} e_{2p-1} \) and \(Ke_{2p-1} = 0 \), then \(a_c(K) = d_c(K) = 2 \) while zero is a pole of the resolvent of \(\pi(K) = 0 \) of order 1. However, if we suppose that \(\text{ran}(T^{d-1}) \) is closed, we obtain the following result:

Proposition 3.3. Let \(T \) be a bounded operator on \(H \). If \(d = a_c(T) = d_c(T) \) and \(\text{ran}(T^{d-1}) \) is closed, then zero is a pole of the resolvent of \(\pi(T) \) of order \(d \).
Proof. Because Theorem 3.1 ensures that zero is a pole of the resolvent of \(\pi(T) \), then it suffices to establish that \(d = a(\pi(T)) \). First suppose that \(n := a(\pi(T)) < d \), and let \(Q \) be the orthogonal projection on \(\ker(T^n) \). Then \(T^{d-1}Q \) is compact and so \(P(T^{d-1})P(Q) = 0 \). We claim that \(\ell^\infty(\ker(T^d)) + m(H) = \ell^\infty(\ker(T^{d-1})) + m(H) \). Let \(\{x_n\}_n \in \ell^\infty(\ker(T^d)) \); then we have
\[
P(T^{d-1})\{x_n\}_n(m(H)) = P(T^{d-1})P(Q)\{x_n\}_n + m(H) = 0,
\]
and hence \(\{x_n\}_n + m(H) \in \ker(P(T^{d-1})) = \ell^\infty(\ker(T^{d-1})) + m(H) \) because \(\dim \ker(T^d)/\ker(T^{d-1}) \) is finite, a contradiction. Therefore \(n \geq d \), and consequently, Theorem 5.3 of [11] implies that \(\text{ran}(T^n) \) and \(\text{ran}(T^{n+1}) \) are closed. Finally, \(n = d \) by Theorem 3.2.

\[\square\]

Acknowledgments

The author would like to thank M. Mostafa Mbekhta and M. Mourad Oudghiri for several discussions concerning the improvement of this paper.

References

Université Lille 1, UFR de Mathématiques, UMR-CNRS 8524, 59655 Villeneuve d’Ascq, France

E-mail address: Olfa.Bel-Hadj-Fredj@math.univ-lille1.fr