Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

On the extensions of homogeneous polynomials


Authors: Anna Kaminska and Pei-Kee Lin
Journal: Proc. Amer. Math. Soc. 135 (2007), 2471-2482
MSC (2000): Primary 46A22, 46A45, 46G25
DOI: https://doi.org/10.1090/S0002-9939-07-08692-3
Published electronically: March 14, 2007
MathSciNet review: 2302568
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We investigate the problem of the uniqueness of the extension of $ n$-homogeneous polynomials in Banach spaces. We show in particular that in a nonreflexive Banach space $ X$ that admits contractive projection of finite rank of at least dimension 2, for every $ n\ge 3$ there exists an $ n$-homogeneous polynomial on $ X$ that has infinitely many extensions to $ X^{**}$. We also prove that under some geometric conditions imposed on the norm of a complex Banach lattice $ E$, for instance when $ E$ satisfies an upper $ p$-estimate with constant one for some $ p>2$, any $ 2$-homogeneous polynomial on $ E$ attaining its norm at $ x\in E$ with a finite rank band projection $ P_x$, has a unique extension to its bidual $ E^{**}$. We apply these results in a class of Orlicz sequence spaces.


References [Enhancements On Off] (What's this?)

  • 1. R. Aron and P.D. Berner, A Hahn-Banach extension theorem for analytic mappings, Bull. Math. Soc. France. 106 (1978), 3-24.MR 0508947 (80e:46029)
  • 2. R. Aron, C. Boyd, and Y.S. Choi, Unique Hahn-Banach theorems for spaces of homogeneous polynomials, J. Austr. Math. Soc. 70 (2001), 387-400. MR 1829965 (2002g:46076)
  • 3. Y.S. Choi, K.H. Han, and H.G. Song, Extensions of polynomials on preduals of Lorentz sequence spaces, Glasgow Math. J. 47 (2005), 395-403. MR 2203508
  • 4. A.M. Davie and T.W. Gamelin, A theorem on polynomial-star approximation, Proc. Amer. Math. Soc. 106 (1989), 351-356.MR 0947313 (89k:46023)
  • 5. S. Dineen, Complex Analysis on Infinite-dimensional Spaces, Springer-Verlag, London, 1999. MR 1705327 (2001a:46043)
  • 6. C. Hao, A. Kaminska and N. Tomczak-Jaegermann, Orlicz spaces with convexity and concavity constant one, J. Math. Anal. and Appl. 320 (2006), 303-321.
  • 7. P. Harmand, D. Werner, and W. Werner, $ M$-ideals in Banach Spaces and Banach Algebras, Lecture Notes in Math. 1547, Springer-Verlag, 1993. MR 1238713 (94k:46022)
  • 8. A. Kaminska and H.J. Lee, On uniqueness of extension of homogeneous polynomials, Houston J. Math. 32 (1) (2006), 227-252. MR 2202363
  • 9. A. Kaminska and H.J. Lee, $ M$-ideal properties in Marcinkiewicz spaces, Comment. Math., special volume for 75th birthday of Julian Musielak (2004), 123-144.MR 2111760 (2005j:46008)
  • 10. J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces I-Sequence Spaces, Springer-Verlag, 1977. MR 0500056 (58:17766)
  • 11. J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces II-Function Spaces, Springer-Verlag, 1979. MR 0540367 (81c:46001)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 46A22, 46A45, 46G25

Retrieve articles in all journals with MSC (2000): 46A22, 46A45, 46G25


Additional Information

Anna Kaminska
Affiliation: Department of Mathematical Sciences, The University of Memphis, Memphis, Tennessee 38152
Email: kaminska@memphis.edu

Pei-Kee Lin
Affiliation: Department of Mathematical Sciences, The University of Memphis, Memphis, Tennessee 38152
Email: pklin@memphis.edu

DOI: https://doi.org/10.1090/S0002-9939-07-08692-3
Keywords: Hahn-Banach extension, homogeneous polynomials, symmetric sequence spaces
Received by editor(s): December 12, 2005
Received by editor(s) in revised form: March 8, 2006
Published electronically: March 14, 2007
Communicated by: N. Tomczak-Jaegermann
Article copyright: © Copyright 2007 American Mathematical Society

American Mathematical Society