Metric geodesics of isometries in a Hilbert space and the extension problem
Authors:
Esteban Andruchow, Lázaro Recht and Alejandro Varela
Journal:
Proc. Amer. Math. Soc. 135 (2007), 2527-2537
MSC (2000):
Primary 47A05, 47B15, 58B20
DOI:
https://doi.org/10.1090/S0002-9939-07-08753-9
Published electronically:
March 21, 2007
MathSciNet review:
2302573
Full-text PDF
Abstract | References | Similar Articles | Additional Information
Abstract: We consider the problem of finding short smooth curves of isometries in a Hilbert space . The length of a smooth curve
,
, is measured by means of
, where
denotes the usual norm of operators. The initial value problem is solved: for any isometry
and each tangent vector at
(which is an operator of the form
with
) with norm less than or equal to
, there exist curves of the form
, with initial velocity
, which are short along their path. These curves, which we call metric geodesics, need not be unique, and correspond to the so called extension problem considered by M.G. Krein and others: in our context, given a symmetric operator











- 1. Andruchow, E., Corach, G. Mbekhta, M. On the geometry of generalized inverses, Math. Nacht. 278 (2005), no. 7-8, 756-770. MR 2141955 (2006f:46047)
- 2. Atkin, C. J. The Finsler geometry of groups of isometries of Hilbert space. J. Austral. Math. Soc. Ser. A (1987), 196-222. MR 0869747 (88a:58018)
- 3. Davis, C., Kahan, W. M., Weinberger, H. F. Norm preserving dilations and their applications to optimal error bounds. SIAM J. Numer. Anal. 19 (1982), 445-469. MR 0656462 (84b:47010)
- 4.
Durán, C. E., Mata-Lorenzo, L. E., Recht, L. Metric geometry in homogeneous spaces of the unitary group of a C
-algebra. Part I. Minimal curves. Adv. Math. 184 (2004), no. 2, 342-366. MR 2054019 (2005f:52025)
- 5.
Durán, C. E., Mata-Lorenzo, L. E., Recht, L. Metric geometry in homogeneous spaces of the unitary group of a C
-algebra. Part II. Geodesics joining fixed endpoints. Integral Equations Operator Theory 53 (2005), no. 1, 33-50. MR 2183595
- 6. Kobayashi, S., Nomizu, K. Foundations of differential geometry. Vol. II. Reprint of the 1969 original. Wiley Classics Library. A Wiley-Interscience Publication. John Wiley & Sons, Inc., New York, 1996. MR 1393941 (97c:53001b)
- 7. Krein, M. G. The theory of self-adjoint extensions of semibounded Hermitian transformations and its applications. Mat. Sb. 20 (1947), 431-495; 21 (1947), 365-404 (in Russian). MR 0024575 (9:515d)
- 8. Halmos, P. R., McLaughlin, J. E. Partial isometries. Pacific J. Math. 13 (1963), 585-596. MR 0157241 (28:477)
- 9. Mata-Lorenzo, L.E., Recht, L. Infinite-dimensional homogeneous reductive spaces. Acta Cient. Venezolana 43 (1992), 76-90. MR 1185114 (93j:46052)
- 10. Porta, H., Recht, L. Minimality of geodesics in Grassmann manifolds. Proc. Amer. Math. Soc. 100 (1987), no. 3, 464-466. MR 0891146 (88f:46113)
- 11. Riesz, F., Sz.-Nagy, B. Functional Analysis. Ungar, New York, 1955. MR 0071727 (17:175i)
Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 47A05, 47B15, 58B20
Retrieve articles in all journals with MSC (2000): 47A05, 47B15, 58B20
Additional Information
Esteban Andruchow
Affiliation:
Instituto de Ciencias, Universidad Nacional de Gral. Sarmiento, J. M. Gutiérrez 1150, (1613) Los Polvorines, Argentina
Email:
eandruch@ungs.edu.ar
Lázaro Recht
Affiliation:
Departamento de Matemática P y A, Universidad Simón Bolívar, Apartado 89000, Caracas 1080A, Venezuela
Email:
recht@usb.ve
Alejandro Varela
Affiliation:
Instituto de Ciencias, Universidad Nacional de Gral. Sarmiento, J. M. Gutiérrez 1150, (1613) Los Polvorines, Argentina
Email:
avarela@ungs.edu.ar
DOI:
https://doi.org/10.1090/S0002-9939-07-08753-9
Keywords:
Isometries,
geodesics
Received by editor(s):
April 22, 2005
Received by editor(s) in revised form:
April 11, 2006
Published electronically:
March 21, 2007
Communicated by:
Joseph A. Ball
Article copyright:
© Copyright 2007
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.