Metric geodesics of isometries in a Hilbert space and the extension problem
Authors:
Esteban Andruchow, Lázaro Recht and Alejandro Varela
Journal:
Proc. Amer. Math. Soc. 135 (2007), 25272537
MSC (2000):
Primary 47A05, 47B15, 58B20
Published electronically:
March 21, 2007
MathSciNet review:
2302573
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: We consider the problem of finding short smooth curves of isometries in a Hilbert space . The length of a smooth curve , , is measured by means of , where denotes the usual norm of operators. The initial value problem is solved: for any isometry and each tangent vector at (which is an operator of the form with ) with norm less than or equal to , there exist curves of the form , with initial velocity , which are short along their path. These curves, which we call metric geodesics, need not be unique, and correspond to the so called extension problem considered by M.G. Krein and others: in our context, given a symmetric operator find all possible extending to all , with . We also consider the problem of finding metric geodesics joining two given isometries and . It is well known that if there exists a continuous path joining and , then both ranges have the same codimension. We show that if this number is finite, then there exist metric geodesics joining and .
 1.
E.
Andruchow, G.
Corach, and M.
Mbekhta, On the geometry of generalized inverses, Math. Nachr.
278 (2005), no. 78, 756–770. MR 2141955
(2006f:46047), http://dx.doi.org/10.1002/mana.200310270
 2.
C.
J. Atkin, The Finsler geometry of groups of isometries of Hilbert
space, J. Austral. Math. Soc. Ser. A 42 (1987),
no. 2, 196–222. MR 869747
(88a:58018)
 3.
Chandler
Davis, W.
M. Kahan, and H.
F. Weinberger, Normpreserving dilations and their applications to
optimal error bounds, SIAM J. Numer. Anal. 19 (1982),
no. 3, 445–469. MR 656462
(84b:47010), http://dx.doi.org/10.1137/0719029
 4.
Carlos
E. Durán, Luis
E. MataLorenzo, and Lázaro
Recht, Metric geometry in homogeneous spaces of the unitary group
of a 𝐶*algebra. I. Minimal curves, Adv. Math.
184 (2004), no. 2, 342–366. MR 2054019
(2005f:52025), http://dx.doi.org/10.1016/S00018708(03)001488
 5.
Carlos
E. Durán, Luis
E. MataLorenzo, and Lázaro
Recht, Metric geometry in homogeneous spaces of the unitary group
of a 𝐶*algebra. II. Geodesics joining fixed endpoints,
Integral Equations Operator Theory 53 (2005), no. 1,
33–50. MR
2183595 (2007a:58006), http://dx.doi.org/10.1007/s0002000313051
 6.
Shoshichi
Kobayashi and Katsumi
Nomizu, Foundations of differential geometry. Vol. II, Wiley
Classics Library, John Wiley & Sons, Inc., New York, 1996. Reprint of
the 1969 original; A WileyInterscience Publication. MR 1393941
(97c:53001b)
 7.
M.
G. Kreĭn, The theory of selfadjoint extensions of
semibounded Hermitian transformations and its applications. II, Mat.
Sbornik N.S. 21(63) (1947), 365–404 (Russian). MR 0024575
(9,515d)
 8.
P.
R. Halmos and J.
E. McLaughlin, Partial isometries, Pacific J. Math.
13 (1963), 585–596. MR 0157241
(28 #477)
 9.
Luis
E. MataLorenzo and Lázaro
Recht, Infinitedimensional homogeneous reductive spaces, Acta
Cient. Venezolana 43 (1992), no. 2, 76–90
(English, with English and Spanish summaries). MR 1185114
(93j:46052)
 10.
Horacio
Porta and Lázaro
Recht, Minimality of geodesics in Grassmann
manifolds, Proc. Amer. Math. Soc.
100 (1987), no. 3,
464–466. MR
891146 (88f:46113), http://dx.doi.org/10.1090/S00029939198708911466
 11.
Frigyes
Riesz and Béla
Sz.Nagy, Functional analysis, Frederick Ungar Publishing Co.,
New York, 1955. Translated by Leo F. Boron. MR 0071727
(17,175i)
 1.
 Andruchow, E., Corach, G. Mbekhta, M. On the geometry of generalized inverses, Math. Nacht. 278 (2005), no. 78, 756770. MR 2141955 (2006f:46047)
 2.
 Atkin, C. J. The Finsler geometry of groups of isometries of Hilbert space. J. Austral. Math. Soc. Ser. A (1987), 196222. MR 0869747 (88a:58018)
 3.
 Davis, C., Kahan, W. M., Weinberger, H. F. Norm preserving dilations and their applications to optimal error bounds. SIAM J. Numer. Anal. 19 (1982), 445469. MR 0656462 (84b:47010)
 4.
 Durán, C. E., MataLorenzo, L. E., Recht, L. Metric geometry in homogeneous spaces of the unitary group of a Calgebra. Part I. Minimal curves. Adv. Math. 184 (2004), no. 2, 342366. MR 2054019 (2005f:52025)
 5.
 Durán, C. E., MataLorenzo, L. E., Recht, L. Metric geometry in homogeneous spaces of the unitary group of a Calgebra. Part II. Geodesics joining fixed endpoints. Integral Equations Operator Theory 53 (2005), no. 1, 3350. MR 2183595
 6.
 Kobayashi, S., Nomizu, K. Foundations of differential geometry. Vol. II. Reprint of the 1969 original. Wiley Classics Library. A WileyInterscience Publication. John Wiley & Sons, Inc., New York, 1996. MR 1393941 (97c:53001b)
 7.
 Krein, M. G. The theory of selfadjoint extensions of semibounded Hermitian transformations and its applications. Mat. Sb. 20 (1947), 431495; 21 (1947), 365404 (in Russian). MR 0024575 (9:515d)
 8.
 Halmos, P. R., McLaughlin, J. E. Partial isometries. Pacific J. Math. 13 (1963), 585596. MR 0157241 (28:477)
 9.
 MataLorenzo, L.E., Recht, L. Infinitedimensional homogeneous reductive spaces. Acta Cient. Venezolana 43 (1992), 7690. MR 1185114 (93j:46052)
 10.
 Porta, H., Recht, L. Minimality of geodesics in Grassmann manifolds. Proc. Amer. Math. Soc. 100 (1987), no. 3, 464466. MR 0891146 (88f:46113)
 11.
 Riesz, F., Sz.Nagy, B. Functional Analysis. Ungar, New York, 1955. MR 0071727 (17:175i)
Similar Articles
Retrieve articles in Proceedings of the American Mathematical Society
with MSC (2000):
47A05,
47B15,
58B20
Retrieve articles in all journals
with MSC (2000):
47A05,
47B15,
58B20
Additional Information
Esteban Andruchow
Affiliation:
Instituto de Ciencias, Universidad Nacional de Gral. Sarmiento, J. M. Gutiérrez 1150, (1613) Los Polvorines, Argentina
Email:
eandruch@ungs.edu.ar
Lázaro Recht
Affiliation:
Departamento de Matemática P y A, Universidad Simón Bolívar, Apartado 89000, Caracas 1080A, Venezuela
Email:
recht@usb.ve
Alejandro Varela
Affiliation:
Instituto de Ciencias, Universidad Nacional de Gral. Sarmiento, J. M. Gutiérrez 1150, (1613) Los Polvorines, Argentina
Email:
avarela@ungs.edu.ar
DOI:
http://dx.doi.org/10.1090/S0002993907087539
PII:
S 00029939(07)087539
Keywords:
Isometries,
geodesics
Received by editor(s):
April 22, 2005
Received by editor(s) in revised form:
April 11, 2006
Published electronically:
March 21, 2007
Communicated by:
Joseph A. Ball
Article copyright:
© Copyright 2007
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.
