ACTIONS OF POINTED HOPF ALGEBRAS
WITH REDUCED PI INVARIANTS

PIOTR GRZESZCZUK AND MALGORZATA HRYNIEWICKA

(Communicated by Martin Lorenz)

Abstract. Let \(R \) be an \(H \)-module algebra, where \(H \) is a pointed Hopf algebra acting on \(R \) finitely of dimension \(N \). Suppose that \(L^H \neq 0 \) for every nonzero \(H \)-stable left ideal of \(R \). It is proved that if \(R^H \) satisfies a polynomial identity of degree \(d \), then \(R \) satisfies a polynomial identity of degree \(dN \) provided at least one of the following additional conditions is fulfilled:

1. \(R \) is semiprime and \(R^H \) is almost central in \(R \),
2. \(R \) is reduced.

If we also assume that \(R^H \) is central, then \(R \) satisfies the standard polynomial identity of degree \(2\lfloor \sqrt{N} \rfloor \), where \(\lfloor \sqrt{N} \rfloor \) is the greatest integer in \(\sqrt{N} \).

1. Introduction

This paper is motivated by the following general question: if \(H \) is a finite-dimensional Hopf algebra over the field \(K \), and \(R \) is a left \(H \)-module algebra such that the algebra of invariants \(R^H \) satisfies a polynomial identity, must \(R \) also satisfy a polynomial identity? The answer to this question is positive in many concrete situations, e.g.,

1. when \(H = K[G] \), where \(G \) is a finite group, and either \(|G|^{-1} \in K \) or \(R \) is reduced (see [K1] and [K2]);
2. when \(H = K[G]^* \) (see [BC] and [BaZ]);
3. when \(H = u(L) \), where \(L \) is a finite-dimensional restricted Lie algebra of derivations of a prime ring \(R \) with \(\text{char} \, R = p > 0 \) such that \(R^H \) is semiprime and the elements inducing the \(X \)-inner part of \(L \) generate a quasi-Frobenius algebra (see [K3]);
4. when \(H \) is such that for every \(H \)-module algebra \(R \) such that \(R^H \) is nilpotent, also \(R \) is nilpotent (see [BaL]);
5. when \(H \) is pointed and \(R \) contains an element \(\gamma \) such that \(t \cdot \gamma = 1 \), for some \(0 \neq t \in \mathbb{Q}^H \), the space of left integrals of \(H \) (see [BeT]).

However for actions of finite groups, where \(|G|R = 0 \), it is known that the answer can be negative. In an example of Bergman, there is an action of a group \(G \) of order \(p^2 \) (where \(p \) is the characteristic of \(K \)) on the algebra \(R = M_2(K[x,y]) \) of \(2 \times 2 \) matrices over a free algebra \(K[x,y] \) such that \(R^G \) is commutative. Recall that in

Received by the editors January 8, 2006 and, in revised form, April 25, 2006.

2000 Mathematics Subject Classification. Primary 16R20, 16S40, 16W30.

The first author was supported by Polish KBN grant No. 1 P03A 032 27.
this example, \(G \) is generated by the inner automorphisms induced by

\[
\begin{pmatrix} 1 & x \\ 0 & 1 \end{pmatrix} \text{ and } \begin{pmatrix} 1 & y \\ 0 & 1 \end{pmatrix}.
\]

Then \(R \) is a prime ring where every nonzero \(G \)-stable (right) ideal of \(R \) contains nontrivial invariants. This shows that the assumption that every nonzero \(H \)-stable left ideal of \(R \) contains nontrivial invariants is not sufficient to obtain a positive answer to the above question. Notice that in the above example \(R^H \) contains nilpotent elements. The main goal of this paper is to present a condition, which guarantees, for a semiprime algebra \(R \), that if \(R^H \) satisfies a PI, then \(R \) also satisfies a PI. We will show that if \(H \) is pointed and every nonzero \(H \)-stable left ideal contains a nontrivial central invariant, then \(R^H \) satisfying a PI implies that \(R \) satisfies a PI. This extends a situation considered in [BCF] and [BG]. In the second main result, we show that if \(R \) has no nonzero nilpotent elements, then the assumption that nonzero \(H \)-stable left ideals contain nontrivial invariants is sufficient for lifting the PI property from \(R^H \) to \(R \). Note that the most typical nontrivial examples of pointed Hopf algebras, which are neither group algebras nor universal enveloping rings of invariants under the action of \(p \)-nilpotent groups, nilpotent Lie algebras and Lie superalgebras was also considered in [BCF] and [BG]. In the second main result, we show that if \(R \) has no nonzero nilpotent elements, then the assumption that nonzero \(H \)-stable left ideals contain nontrivial invariants is sufficient for lifting the PI property from \(R^H \) to \(R \).

Throughout the paper \(K \) will be a field, \(H \) a pointed Hopf algebra over \(K \), and \(R \) an algebra over \(K \). We let \(\Delta : H \to H \otimes H \) be the comultiplication of \(H \), \(\epsilon : H \to K \) is the counit of \(H \), and \(S : H \to H \) the antipode of \(H \). We say that \(R \) is a left \(H \)-module algebra if \(R \) is a left \(H \)-module such that \(h \cdot ab = \sum (h_1 \cdot a)(h_2 \cdot b) \) and \(h \cdot 1_R = \epsilon(h)1_R \), where \(h \in H \), \(\Delta(h) = \sum h_1 \otimes h_2 \), \(a, b \in R \). If \(A \) is a subset of \(R \) such that \(h \cdot A \subseteq A \), for all \(h \in H \), then we say that \(A \) is \(H \)-stable. When \(R \) is a left \(H \)-module algebra one can consider the smash product \(R \# H \). As a vector space \(R \# H = R \otimes H \). The elements of \(R \# H \) can be written as finite sums \(\sum a_h h \), where \(h \in H \) and \(a_h \in R \). Then the multiplication in \(R \# H \) is determined by the formula \((ah)(bl) = \sum a(h_1 \cdot b)h_2l \), for all \(a, b, h, l \in H \). The ring of invariants \(R^H \) is defined as \(\{ r \in R \mid h \cdot r = \epsilon(h)r, \text{ for all } h \in H \} \).

If \(R \) is a left \(H \)-module algebra, then \(R \) becomes a left \(R \# H \)-module using the left action \((ah).r = a(h \cdot r) \), where \(a, r \in R \) and \(h \in H \). Then the commuting ring \(\text{End}_{R \# H}(R) \) is isomorphic to \(R^H \) and the submodules of \(R \) over \(R \# H \) are precisely \(H \)-stable ideals of \(R \).

If \(M \) is a left \(H \)-module, then there is a homomorphism \(\pi : H \to \text{End}_K(M) \) defined by \(\pi(h)(m) = hm \), for all \(h \in H \) and \(m \in M \). If \(\dim_K \pi(H) = N < \infty \), then we say that \(H \) acts finitely of dimension \(N \). Clearly \(\dim_K \pi(H) \leq \dim_K H \), so if \(H \) is finite dimensional, then \(H \) acts finitely on each \(H \)-module.

If \(R \) is semiprime, we let \(Q = Q(R) \) denote the symmetric Martindale quotient ring. Its center, known as the extended centroid of \(R \), we denote by \(C \). The following properties of \(Q \), when \(R \) is acted on by a Hopf algebra, are proved in Propositions 1, 2 and 5 of [GH].
Lemma 1. Let R be a semiprime H-module algebra such that the H-action on R extends to an H-action on Q and any nonzero H-stable ideal of R contains nontrivial invariants. Then

1. the ring $C^H = C \cap Q^H$ is von Neumann regular and selfinjective.
2. For any nonempty subset X of Q there exists an idempotent $\tilde{e}_X \in C^H$ such that $\text{ann}_{C^H}(X) = (1 - \tilde{e}_X)C^H$. If X is an injective C^H-submodule of Q, then there exists $x \in X$ such that $\text{ann}_{C^H}(X) = \text{ann}_{C^H}(x) = (1 - \tilde{e}_x)C^H$.
3. If $L \subseteq Q$ is an H-stable subalgebra of Q which is injective as a C^H-module, then L^H is also injective as a C^H-module.
4. If a nonempty subset $S \subseteq C^H \setminus \{0\}$ is closed under a multiplication, then the localization Q_S of Q at S is semiprime and $Z(Q_S) = C_S$.
5. If H acts finitely on Q and $S = C^H \setminus M$, where M is a maximal ideal of C^H, then the H-action on Q extends to an H-action on Q_S and $(Q^H)_S = (Q_S)^H$, where $(C^H)_S = (C^H)_S = C_S \cap (Q^H)$ is a field contained in the center of Q_S.

It is also known (GH Proposition 2)) that under the assumptions of Lemma 1 the ring Q is nonsingular and injective as a C^H-module. This immediately implies that if $\varphi : M \rightarrow N$ is an onto C^H-module map, where $0 \neq N \subseteq Q$ and M is injective, then N is also an injective C^H-module. In particular, any principal left ideal Qg of Q is nonsingular and injective as a C^H-module. Hence each finitely generated left ideal of Q (finitely generated as a left Q-module) is also injective over C^H.

An important role will be played by the following result of Bergen, Cohen and Fischman on irreducible actions of Hopf algebras (see [BCF], Theorem 2.2).

Theorem 2. Let A be a left H-module algebra such that $A \# H$ acts irreducibly on A. A has a finite left Goldie rank, and H acts finitely of dimension N on A. Then $[A : A^H]_r \leq N$, where $[A : A^H]_r$ is the dimension of A as a right vector space over the division ring A^H.

2. Main results

Throughout this section H will be a pointed Hopf algebra over a field K. Recall that a ring R is said to be reduced if it does not contain nonzero nilpotent elements. It is well known that if r_1, r_2, \ldots, r_n are elements of a reduced ring R such that $r_1r_2 \cdots r_n = 0$, then $r_{f(1)}r_{f(2)} \cdots r_{f(n)} = 0$ for any bijection $f : \{1, 2, \ldots, n\} \rightarrow \{1, 2, \ldots, n\}$.

If R is a left H-module algebra with center $Z(R)$, we say that the ring of invariants is almost central in R if $L^H \cap Z(R) \neq 0$ for every nonzero H-stable left ideal L of R. Notice that if R is semiprime and R^H is almost central in R, then R^H is reduced. Indeed, suppose there exists $0 \neq a \in R^H$ such that $a^2 = 0$. The left ideal Ra is H-stable, so one can find a nonzero element $ra \in (Ra)^H \cap Z(R)$. Then $ara = a(ra) = (ra)a = 0$ and thus $(ra)^2 = 0$, which is impossible since $Z(R)$ is reduced.

Our first main goal is to prove the following.

Theorem 3. Let R be a semiprime K-algebra with center Z and suppose R is a left H-module algebra, where H is a pointed Hopf algebra acting on R finitely of dimension N. If the subalgebra of invariants R^H is almost central in R, and R^H
satisfies a polynomial identity of degree \(d \), then \(R \) satisfies the standard polynomial identity of degree \(dN \). If in addition \(R^H \subseteq \mathbb{Z} \), then \(R \) satisfies the standard polynomial identity of degree \(2[\sqrt{N}] \), where \(\lfloor \sqrt{N} \rfloor \) is the greatest integer in \(\sqrt{N} \).

Our next result concerns the situation when the algebra \(R \) is reduced.

Theorem 4. Let \(R \) be a reduced \(H \)-module \(K \)-algebra, where \(H \) is a pointed Hopf algebra acting on \(R \) finitely of dimension \(N \). Suppose that \(L^H \neq 0 \) for every nonzero \(H \)-stable left ideal \(L \) of \(R \). If \(R^H \) satisfies a polynomial identity of degree \(d \), then \(R \) satisfies the standard polynomial identity of degree \(dN \).

The proofs require some preparation. Recall that a module \(M \) is called uniform if the intersection of any two nonzero submodules is nonzero. We start with the following general observation.

Lemma 5. Let \(M \) be an irreducible (uniform) left \(R\#H \)-module and suppose that \(H \) acts finitely on \(M \). Then \(M \) has finite length (finite Goldie rank) as a left \(R \)-module.

Proof. Let \(M \) be an arbitrary (not necessarily irreducible) left \(R\#H \)-module. Let \(\pi : H \to \text{End}_R(M) \) be a homomorphism of algebras induced by the action of \(H \) on \(M \). By using the Taft-Wilson Theorem (see [M1, Theorem 5.4.1]) we can decompose \(H \) as a finite union \(\bigcup_{i=1}^{N} H_i \) of an increasing chain of subspaces \(\{ H_i \} \) such that

1. \(\pi(H_i) = \pi(H_{i-1}) + K \cdot \pi(h_i) \), where \(h_i = 1_H \) and \(h_i \in H \) for \(2 \leq i \leq N \),
2. \(\Delta(h_i) \in \sigma \otimes h_i + h_i \otimes \tau + H_{i-1} \otimes H_{i-1} \), where \(\sigma, \tau \in G \) and \(2 \leq i \leq N \).

Moreover, we can assume in (ii) that if \(h_i \neq \tau \) (that is, if \(h_i \) is not a group-like element), then \(\tau \in H_{i-1} \).

If \(A \) is an \(R \)-submodule of \(M \) and \(j \geq 1 \), let

\[
A_{(j)} = \{ m \in M \mid h_1m, \ldots, h_jm \in A \}.
\]

If \(h_i \in H \) satisfies (ii), then

\[
h_i(rm) = \sigma(r)h_i m + (h_i \cdot r)\tau m + \sum (h_{i1} \cdot r)h_{i2}m,
\]

where \(r \in R \), \(m \in M \) and \(h_{i1}, h_{i2} \in H_{i-1} \). Thus an easy induction argument shows that \(A_{(j)} \) is also an \(R \)-submodule of \(M \). Since \(\{ \pi(h_1), \ldots, \pi(h_N) \} \) is a \(K \)-basis of \(\pi(H) \), we obtain immediately that \(hA_{(N)} \subseteq A_{(N)} \), for all \(h \in H \); thus \(A_{(N)} \) is an \(R\#H \)-submodule. In fact \(A_{(N)} \) is the largest \(R\#H \)-submodule contained in \(A \).

Now if \(\{ A_{\alpha} \} \) is a chain of \(R \)-submodules of \(M \), each of which contains no nonzero \(R\#H \)-submodule, then \(\bigcup A_{\alpha} \) also contains no nonzero \(R\#H \)-submodule. Indeed, if \(B \subseteq \bigcup A_{\alpha} \) is a nonzero \(R\#H \)-submodule and \(0 \neq b \in B \), then \(\{ h_1b, \ldots, h_Nb \} \subseteq A_{\alpha_0} \) for some \(\alpha_0 \). Therefore \((R\#H)b \subseteq A_{\alpha_0} \), and so \(A_{\alpha_0} \) contains a nonzero \(R\#H \)-submodule, a contradiction. Consequently, by Zorn’s Lemma, there exists an \(R \)-submodule \(\widehat{A} \) of \(M \) which is maximal with respect to containing no nonzero \(R\#H \)-submodule. We can now consider the chain of \(R \)-submodules

\[
M \supseteq \widehat{A} = \widehat{A}_{(1)} \supseteq \widehat{A}_{(2)} \supseteq \cdots \supseteq \widehat{A}_{(N-1)} \supseteq \widehat{A}_{(N)} = 0.
\]

Now suppose that \(M \) is irreducible (resp. uniform) as a left \(R\#H \)-module. Since \(B_{(N)} \neq 0 \), for any \(R \)-submodule \(B \) properly containing \(\widehat{A} \), we see that the factor \(R \)-module \(M/\widehat{A} \) is irreducible (resp. uniform). If \(1 \leq i \leq N-1 \), then we can consider the maps

\[
\varphi_i : \widehat{A}_{(i)} \to M/\widehat{A}
\]
Hence \(a \) is a nontrivial element of \(\Delta(i) \). By (ii) there exist \(\sigma, \tau \in G \) such that

\[
\Delta(h_{i+1}) - \sigma \otimes h_{i+1} - h_{i+1} \otimes \tau \in H_i \otimes H_i.
\]

Hence if \(r \in R \) and \(a \in \widehat{A}(i) \), then since \(H_i a \subseteq \widehat{A} \), we have

\[
\varphi_i(ra) = h_{i+1}(ra) + \widehat{A} = (h_{i+1}r)a + \widehat{A} = \sigma(r)h_{i+1}a + (h_{i+1} \cdot r)\tau a + \widehat{A} = \sigma(r)h_{i+1}a + \widehat{A} = \sigma(r)\varphi_i(a).
\]

It is easy to see that \(\ker \varphi_i = \widehat{A}(i) \). Therefore each \(\varphi_i \) induces an embedding of the lattice of \(R \)-submodules of \(\widehat{A}(i)/\widehat{A}(i+1) \) into the lattice of \(R \)-submodules of \(M/\widehat{A} \).

In our situation the \(R \)-module \(M/\widehat{A} \) is irreducible, so each \(\widehat{A}(i)/\widehat{A}(i+1) \) is either the zero module or irreducible (resp. uniform) as an \(R \)-module. Therefore \(M \) has a finite length (resp. finite Goldie rank), not exceeding \(N \), as an \(R \)-module. \(\square \)

Let \(Q = Q(R) \) be the symmetric Martindale quotient ring of \(R \). From the result of Montgomery (see [M2 Corollary 3.5]) it follows that when \(H \) is pointed, the \(H \)-action on \(R \) can be extended to an \(H \)-action on \(Q \). Moreover, it is easy to see that if \(H \) acts finitely on \(R \), then every essential ideal of \(R \) contains an \(H \)-stable ideal which is also essential in \(R \) (see [GH] Lemma 9). As a consequence of some basic properties of \(Q \), we obtain the following.

Lemma 6. Let \(H \) be a pointed Hopf algebra and let \(R \) be a semiprime left \(H \)-module algebra such that \(R^H \) is reduced and \(L^H \neq 0 \) for every nonzero \(H \)-stable left ideal \(L \) of \(R \). Suppose \(R^H \) satisfies a multilinear identity of degree \(d \) and \(H \) acts on \(R \) finitely of dimension \(N \). Then

1. \(L^H \neq 0 \), for every nonzero \(H \)-stable left ideal \(L \) of \(Q \).
2. \(Z(R^H) \subseteq Z(Q^H) \).
3. \(Q^H \) is reduced and satisfies the same multilinear identity as \(R^H \).
4. \(H \) acts finitely of dimension \(N \) on \(Q \).
5. \(R^H \) is almost central in \(R \), then \(Q^H \) is almost central in \(Q \).
6. \(R^H \subseteq Z \), then \(Q^H \subseteq C \).

Proof. For (1), if \(L \) is a nonzero \(H \)-stable left ideal of \(Q \), then \(L = L \cap R \) is a nonzero \(H \)-stable left ideal of \(R \). By assumption \(L^H \neq 0 \), so \(L^H \neq 0 \).

Before proving (2), notice that if \(I \) is an \(H \)-stable essential ideal of \(R \), then \(\text{1ann}_R(I^H \cap Z(R^H)) = 0 \). Indeed, it is clear that \(L = 1 \text{ann}_R(I^H \cap Z(R^H)) \) is an \(H \)-stable left ideal of \(R \). If \(L \neq 0 \), then \(0 \neq I \cdot L \subseteq I \cap L \) and since \(R^H \) is reduced, we obtain that \(I \cap L^H \) is a two-sided ideal of \(R^H \). By assumption \(R^H \) satisfies a PI, so \(0 \neq Z((I \cap L)^H) \subseteq Z(R^H) \). Thus one can choose a nonzero element \(c \in (I \cap L)^H \cap Z(R^H) \). But then \(c^2 \in L \cdot (I^H \cap Z(R)) = 0 \), which is impossible, since \(R^H \) is reduced. This also implies that \(1 \text{ann}_Q(I^H \cap Z(R^H)) = 0 \). By using an easy induction argument, we obtain that for any \(d \geq 1 \),

\[
1 \text{ann}_Q((I^H \cap Z(R^H))^d) = 0.
\]

This immediately implies that \(Z(R^H) \subseteq Z(Q^H) \). To see this, take a nonzero \(q \in Q^H \) and an essential \(H \)-stable ideal \(J \) of \(R \) satisfying \(Jq \subseteq R \) and \(qJ \subseteq R \). Then, for any \(x \in J^H \) and \(c \in Z(R^H) \), we have \(qx \in R^H \) and

\[
0 = [q, x] = [q, c]x + q[x, c] = [q, c]x.
\]

Hence \([q, c]J^H = 0 \) and by (1.1), \([q, c] = 0 \). Consequently, \(Z(R^H) \subseteq Z(Q^H) \). This ends the proof of (2).
For the first part of (3), take \(q \in Q^H \) such that \(q^2 = 0 \), and \(I \) an essential \(H \)-stable ideal of \(R \) satisfying \(qI \cup Iq \subseteq R \). Then \((I^H \cap Z(R^H))q \subseteq R \) and using (2) we obtain \(((I^H \cap Z(R^H))q)^2 = q^2(I^H \cap Z(R^H))^2 = 0 \). Since \(R^H \) is reduced, \((I^H \cap Z(R^H))q = 0 \) and (2.1) forces that \(q = 0 \). Therefore \(Q^H \) is reduced.

Now let \(f(x_1, x_2, \ldots, x_d) = \sum_{\sigma \in S_d} a_{\sigma} x_{\sigma(1)} \cdots x_{\sigma(d)} \) be a multilinear polynomial such that the identity \(f(x_1, x_2, \ldots, x_d) = 0 \) is satisfied by \(R^H \). Take \(q_1, q_2, \ldots, q_d \in Q^H \) and an \(H \)-stable essential ideal \(I \) of \(R \) such that \(q_j I \subseteq R \) for \(j = 1, 2, \ldots, d \). Then for all \(c_1, c_2, \ldots, c_d \in I^H \cap Z(R^H) \) we have \(c_i q_j \in R^H \), so by using (2),

\[
0 = f(c_1 q_1, c_2 q_2, \ldots, c_d q_d) = f(q_1, q_2, \ldots, q_d) c_1 c_2 \cdots c_d.
\]

This means that \(f(q_1, q_2, \ldots, q_d) \in \text{l.ann}_Q((I^H \cap Z)^d) = 0 \). Thus the identity

\[
f(x_1, x_2, \ldots, x_d) = 0
\]

is satisfied also by \(Q^H \). This proves (3).

For (4), let \(\hat{\pi} : H \to \text{End}_K(Q) \) be the natural \(K \)-algebra homomorphism, corresponding to the action of \(H \) on \(Q \). We need to show that \(\ker \pi = \ker \hat{\pi} \). The inclusion \(\ker \pi \supseteq \ker \hat{\pi} \) is clear. Suppose \(h \in \ker \pi \). Take \(q \in Q \) and \(I \) an essential \(H \)-stable ideal of \(R \) such that \(qI \subseteq R \). Since \(\pi(h) \) is an \(R^H \)-bimodule map, we obtain that

\[
\hat{\pi}(h)(q)a = \hat{\pi}(h)(qa) = \pi(h)(qa) = 0
\]

for any \(a \in I^H \). Hence \(\hat{\pi}(h)(q) \in \text{l.ann}_Q(I^H) \subseteq \text{l.ann}_Q((I^H \cap Z(R^H))) = 0 \). Thus \(h \in \ker \hat{\pi} \) and consequently \(\ker \hat{\pi} = \ker \pi \). Thus \(\text{dim}_K \hat{\pi}(H) = \text{dim}_K \pi(H) \).

For (5), if \(L \) is a nonzero \(H \)-stable left ideal of \(Q \), then \(\hat{L} = L \cap R \) is a nonzero \(H \)-stable left ideal of \(R \). Since \(Z(R) \subseteq C \) and \(\hat{L}^H \cap Z(R) \neq 0 \), we obtain that \(L^H \cap C \neq 0 \). Thus \(Q^H \) is almost central in \(Q \).

For (6), take \(q \in Q^H \) and an \(H \)-stable essential ideal \(I \) of \(R \) such that \(qI \subseteq R \). If \(c \in I^H \), then \(qc \in R^H \subseteq Z \) and hence

\[
(qr - rq)c = (qr)c - r(qc) = (qc)r - (qc)r = 0,
\]

for any \(r \in R \). Thus \(rq - qr \in \text{l.ann}_Q(I^H \cap Z(R^H)) = 0 \). Therefore \(q \) centralizes \(R \), so \(q \in C \).

We are now ready to prove the first main result of the paper.

Proof of Theorem 3. By Lemma 3 all assumptions on \(R \) can be lifted to \(Q \). Let \(h_1, h_2, \ldots, h_N \in H \) be such that \(\{\pi(h_1), \pi(h_2), \ldots, \pi(h_N)\} \) is a basis for \(\pi(H) \subseteq \text{End}_K(Q) \). Notice that for any \(q \in Q \) the left ideal \(L = \sum_{i=1}^{N} \text{Q}(h_i \cdot q) \) is \(H \)-stable.

By applying the remarks after Lemma 1 we see that any finitely generated (as a left \(Q \)-module) left ideal of \(Q \) is contained in an \(H \)-stable finitely generated left ideal which is also injective as a \(C^H \)-module.

Let \(M \) be a maximal ideal of \(C^H \) and \(\eta_M : Q \to Q_M \) be a natural ring homomorphism, where \(Q_M \) is the localization of \(Q \) at \(S = C^H \setminus M \). By Lemma 1 it follows that \(Q_M \) is semiprime and Lemma 6 shows that \((Q_M)^H = (Q^H)_M \) satisfies a multilinear identity of degree \(d \). We claim that \((Q^H)_M \) is almost central in \(Q_M \). Take a nonzero \(H \)-stable left ideal \(T \) of \(Q_M \) and choose a finitely generated \(H \)-stable left ideal \(L \) of \(Q \) such that \(0 \neq \eta_M(L) \subseteq T \). Then \(L \) is injective as a left \(C^H \)-module and by Lemma 1(3), \(L^H \) is also injective as a left \(C^H \)-module. Since \(C \) is injective over \(C^H \), the intersection \(L^H \cap C \) is injective as a \(C^H \)-module.

By Lemma 1(2), there exist \(x \in L^H \cap C \) and an idempotent \(\tilde{c}_x \in C^H \) such that
ann_{C^H}(L^H \cap C) = \text{ann}_{C^H}(x) = (1 - \widehat{e}_x)C^H. We claim that
(1 - \widehat{e}_x)L = 0. If not, then
(1 - \widehat{e}_x)L is a nonzero H-stable left ideal of Q. Since Q^H is almost central in Q, we can choose a nonzero $c \in ((1 - \widehat{e}_x)L)^H \cap C$. Then $c \in L^H \cap C$ and $c = (1 - \widehat{e}_x)c \in (1 - \widehat{e}_x)C^H = \text{ann}_{C^H}(L^H \cap C)$. Therefore $c^2 = 0$, which is impossible because C is a field. This proves the claim. Since $\eta_M(L) \neq 0$, $1 - \widehat{e}_x \in M$. Hence $\text{ann}_{C^H}(x) \subseteq M$ and thus $0 \neq Q^H(x) \in T^H \cap C_M$. Therefore $(Q_M)^H$ is almost central in Q_M.

On the other hand by Lemma 1(5), $(Q_M)^H \cap C_M$ is a field, so Q_M does not contain proper H-stable left ideals. Thus Q_M is an irreducible left $Q_M\#H$-module. By Lemma 5, Q_M has finite length as a left Q_M-module, so in particular Q_M has finite left Goldie rank. We are now in a position to apply Theorem 2. It asserts that $(Q_M)^H$ is a division ring and
$\text{dim}_Q ((Q_M)^H) \leq n \leq N$. If we let A_M denote the annihilator ideal $\{w \in Q_M\#H \mid wQ_M = 0\}$, then $Q_M\#H/A_M \cong M_n((Q_M)^H)$. The division algebra $(Q_M)^H$ satisfies a polynomial identity of degree η, so $M_n((Q_M)^H)$ satisfies the standard polynomial identity s_{dN} of degree $dn \leq dN$. Since Q_M is semiprime we have an embedding $Q_M \hookrightarrow Q_M\#H/A_M$. Thus for any maximal ideal M of C^H, the localization Q_M satisfies the standard polynomial identity s_{dN}. The fact that C^H is von Neumann regular implies immediately the existence of an embedding $Q \hookrightarrow \prod M Q_M$, where the product is taken over all maximal ideals of C^H. Therefore Q satisfies s_{dN}.

If we additionally assume that $R^H \subseteq Z$, then by Lemma 6, $Q^H \subseteq C$. Thus for a given maximal ideal M of C^H, Q_M is a semisimple finite-dimensional algebra containing a central subfield $(C_M)^H$ such that $\text{dim}_{C_M^H} Q_M \leq N$. Therefore, the Amitsur-Levitzki Theorem asserts that Q_M satisfies the standard polynomial identity of degree $2\sqrt{N}$. As a result, if the invariants R^H are central in R, then R satisfies $s_{2\sqrt{N}}$, thereby concluding the proof. \hfill \Box

Proof of Theorem 4 Let us first consider the special case where R^H is a domain. Then, by Posner’s Theorem, R^H is a Goldie ring. Furthermore, if we put $T = Z(R^H) \setminus \{0\}$, then the localization $T^{-1}R^H$ is a division algebra with center $Z = T^{-1}Z(R^H)$ and $\text{dim}_Z T^{-1}R^H \leq (\frac{4}{3})^2$. It is easy to see that every nonzero element $z \in Z(R^H)$ is regular in R. In fact, since R is reduced, $J = \text{Ann}_R(z) = r. \text{Ann}_R(z)$ is a two-sided H-stable ideal of R. If J is nonzero, then $Z(J^H) \neq 0$ (because R^H satisfies a PI), and clearly $Z(J^H) \subseteq Z(R^H)$. But $Z(J^H)z = 0$, and this contradicts our assumption that R^H is a domain. We claim that the subset T satisfies the left Ore condition in R. To see this, note that by Lemma 5, R has a finite left Goldie rank. Furthermore, R, as a reduced ring, certainly has zero singular ideal. Thus R is left Goldie. Now it is enough to show that any essential left ideal of R intersects T nontrivially. Since the group $G = G(H)$ of group-like elements acts finitely, we need only consider essential left ideals which are G-stable. Let L be a G-stable essential left ideal of R and, using the notation in Lemma 3, let $L_{(j)} = \{x \in L \mid h_1 \cdot x, \ldots, h_j \cdot x \in L\}$. We will show by induction that $L_{(j)}$ is essential for all $j \geq 1$. To see this, let I be any nonzero left ideal of R. Given $0 \neq a \in L_{(j-1)} \cap I$, the left ideal $E = \bigcap_{1 \leq j} \{r \in R \mid r(h_i \cdot a) \in L\}$ is essential. Since R is nonsingular, we can choose $r \in \bigcap_{\sigma \in G} E^\sigma$ with $ra \neq 0$. Then

$$h_j \cdot (ra) = \sigma(r)(h_j \cdot a) + (h_j \cdot r)\tau(a) + \sum (h_{j_1} \cdot r)(h_{j_2} \cdot a) \in L.$$
Thus 0 ≠ ra ∈ L(j), so L(j) is essential. In particular ˆL = L(N) is nonzero and H-stable. By assumption ˆL is a nonzero left ideal of R^H. But R^H is a PI domain, so any nonzero left ideal intersects T nontrivially. This proves the claim.

Notice that T^{-1}R is in a natural way a left H-module algebra and (T^{-1}R)^H = T^{-1}R^H is a division algebra satisfying a polynomial identity of degree d. It is also clear that T^{-1}R has no proper left H-stable ideals, so T^{-1}R becomes an irreducible left (T^{-1}R)#H-module. Applying the same argument as in the proof of our previous theorem, we obtain that T^{-1}R satisfies s_{dN}. Therefore R also satisfies the standard identity s_{dN}.

For the general case, since R is reduced, the symmetric Martindale quotient ring Q is also reduced. Similarly, as in Theorem 3 let us consider a maximal ideal M of C^H and the canonical map η_M : Q → Q_M. We claim that (Q^H)_M is a domain. To this end, let a, b ∈ Q^H be such that ab = 0, and let e_a, e_b ∈ C^H be idempotents such that ann_Q(QaQ) = (1 − e_a)Q and ann_Q(QbQ) = (1 − e_b)Q. Since Q is reduced, ann_Q(a) = r.ann_Q(QaQ) = ann_Q(QaQ) and e_a.e_b = 0. On the other hand ann_Q(b) = (1 − e_b)Q, so there exists x ∈ Q satisfying e_a = (1 − e_b)x. Now it is clear that e_a.e_b = 0, and thus either e_a ∈ M or e_b ∈ M. This immediately implies that either η_M(a) = 0 or η_M(b) = 0. Therefore (Q^H)_M is a domain, as claimed. Notice that the ring Q_M is reduced. Indeed, if q ∈ Q and c ∈ C^H \ M are such that cq^2 = 0, then (cq)^2 = 0 and cq = 0, since Q is reduced. Consequently η_M(q) = 0. As a result Q_M is a reduced left H-module algebra and its subalgebra of invariants (Q_M)^H = (Q^H)_M is a domain satisfying a polynomial identity of degree d. By the previous paragraph Q_M satisfies s_{dN}. Since this holds for any maximal ideal M of C^H, the ring Q satisfies s_{dN}.

We close the paper with a remark concerning actions on reduced algebras. We see that the result of Kharchenko for group actions (mentioned in the introduction) is a direct consequence of his fundamental result on the existence of fixed elements and Theorem 3. Moreover, Beidar and Grzeszczuk proved in [BeG] an analogous result on the existence of nontrivial constants for actions of Lie algebras. Finally, Theorem 3 now provides us with a common proof of the following.

Corollary 7. Let R be a reduced algebra. Then

1. (cf. [K2]) if R is acted on by a finite group G and R^G satisfies a PI of degree d, then R satisfies a PI of degree d|G|.

2. If R is acted finitely on by a finite-dimensional Lie algebra L and R^L satisfies a PI of degree d, then R satisfies a PI of degree dN, where N is the dimension of the action.

REFERENCES

Faculty of Computer Science, Technical University of Bialystok, Wiejska 45A, 15-351 Bialystok, Poland
E-mail address: piotrgr@pb.bialystok.pl

Institute of Mathematics, University of Bialystok, Akademicka 2, 15-267 Bialystok, Poland
E-mail address: margitt@math.uwb.edu.pl