Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

$ BLO$ spaces associated with the sections


Author: Lin Tang
Journal: Proc. Amer. Math. Soc. 135 (2007), 2423-2432
MSC (2000): Primary 42B25, 42B20
DOI: https://doi.org/10.1090/S0002-9939-07-08903-4
Published electronically: April 5, 2007
MathSciNet review: 2302563
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: $ BLO$ spaces associated with the sections are introduced. It is shown that some properties which hold for the classical space $ BLO$ related to the balls (or cubes) remain valid for the space $ BLO$ related to the sections.


References [Enhancements On Off] (What's this?)

  • [1] H. Aimar, L. Forzani and R. Toledano, Balls and quasi-metrics: a space of homogeneous type modeling the real analysis related to the Monge-Ampère equation, J. Fourier Anal. Appl. 4(1998), 377-381. MR 1658608 (99j:35043)
  • [2] C. Bennett, Another characterization of $ BLO$, Proc. Amer. Math. Soc. 85(1982), 552-556. MR 660603 (84h:42029)
  • [3] L. A. Caffarelli and C. E. Gutiérrez, Real analysis related to the Monge-Ampère equation, Trans. Amer. Math. Soc. 348(1996), 1075-1092. MR 1321570 (96h:35047)
  • [4] L. A. Caffarelli and C. E. Gutiérrez, Singular integrals related to the Monge-Ampère equation, Wavelet Theory and Harmonic Analysis in Applied Sciences (Buenos Aires, 1995), 3-13, Appl. Numer. Harmon. Anal., Birkhäuser Boston, Boston, Mass., 1997. MR 1463236 (99f:42030)
  • [5] R. R. Coifman and R. Rochberg, Another characterization of $ BMO$, Proc. Amer. Math. Soc., 79(1980), 249-254. MR 565349 (81b:42067)
  • [6] Y. Ding and C. Lin, Hardy spaces associated to the sections, Tohoku Math. J. 57(2005), 147-170. MR 2137464 (2006d:42039)
  • [7] C. E. Gutiérrez and Q. Huang, Geometric properties of the sections of solutions to the Monge-Ampère equation. Trans. Amer. Math. Soc, 252(2000), 4381-4396. MR 1665332 (2000m:35060)
  • [8] A. Incognito, Weak-type (1,1) inequality for the Monge-Ampère SIO's, J. Fourier Anal. Appl. 7(2001), 41-48. MR 1812994 (2002c:42020)
  • [9] E. M. Stein, Harmonic Analysis: Real-variable Methods, Orthogonality, and Oscillatory Integrals, Princeton Univ. Press, Princeton, New Jersey, 1993. MR 1232192 (95c:42002)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 42B25, 42B20

Retrieve articles in all journals with MSC (2000): 42B25, 42B20


Additional Information

Lin Tang
Affiliation: LMAM, School of Mathematical Science, Peking University, Beijing, 100871, People’s Republic of China
Email: tanglin@math.pku.edu.cn

DOI: https://doi.org/10.1090/S0002-9939-07-08903-4
Received by editor(s): October 28, 2005
Published electronically: April 5, 2007
Additional Notes: The research was supported by the NNSF (10401002) and NNSF (10371004) of China
Communicated by: Michael T. Lacey
Article copyright: © Copyright 2007 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society