Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Asymptotics of best-packing on rectifiable sets


Authors: S. V. Borodachov, D. P. Hardin and E. B. Saff
Journal: Proc. Amer. Math. Soc. 135 (2007), 2369-2380
MSC (2000): Primary 11K41, 70F10, 28A78; Secondary 78A30, 52A40
DOI: https://doi.org/10.1090/S0002-9939-07-08975-7
Published electronically: April 10, 2007
MathSciNet review: 2302558
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We investigate the asymptotic behavior, as $ N$ grows, of the largest minimal pairwise distance of $ N$ points restricted to an arbitrary compact rectifiable set embedded in Euclidean space, and we find the limit distribution of such optimal configurations. For this purpose, we compare best-packing configurations with minimal Riesz $ s$-energy configurations and determine the $ s$-th root asymptotic behavior (as $ s\to \infty)$ of the minimal energy constants.

We show that the upper and the lower dimension of a set defined through the Riesz energy or best-packing coincides with the upper and lower Minkowski dimension, respectively.

For certain sets in $ {\rm {\bf R}}^d$ of integer Hausdorff dimension, we show that the limiting behavior of the best-packing distance as well as the minimal $ s$-energy for large $ s$ is different for different subsequences of the cardinalities of the configurations.


References [Enhancements On Off] (What's this?)

  • 1. N.N. Andreev, On positions of points with minimal energy, Papers of the V.A. Steklov Math. Institute 219 (1997), 27-31.
  • 2. K. B $ {\rm\ddot{o}}$r $ {\rm\ddot{o}}$czky Jr., Finite Packing and Covering, Cambridge University Press, 2004. MR 2078625 (2005g:52045)
  • 3. S.V. Borodachov, D.P. Hardin, E.B. Saff, Asymptotics for discrete weighted minimal Riesz energy problems on rectifiable sets, Trans. Amer. Math. Soc., to appear.
  • 4. J.H. Conway, N.J.A. Sloane, Sphere Packings, Lattices and Groups, Springer Verlag, New York: 3rd ed., 1999. MR 1662447 (2000b:11077)
  • 5. H. Federer, Geometric measure theory, Springer-Verlag, Berlin-Heidelberg-New York, 1969. MR 0257325 (41:1976)
  • 6. L. Fejes Toth, Lagerungen in der Ebene auf der Kugel und im Raum, Springer Verlag, Berlin-Göttingen-Heidelberg, 1953. MR 0057566 (15:248b)
  • 7. L. Fejes Toth, Regular figures, Pergamon Press, The Macmillan Co., New York, 1964. MR 0165423 (29:2705)
  • 8. S. Graf, H. Luschgy, Foundations of quantization for probability distributions, Lect. Notes in Math., vol. 1730, Springer, 2000. MR 1764176 (2001m:60043)
  • 9. P. M. Gruber, Optimum quantization and its applications, Adv. Math. 186 (2004), no. 2, 456-497. MR 2073915 (2005e:94060)
  • 10. T.C. Hales, A proof of the Kepler conjecture, Ann. of Math. (2) 162 (2005), no. 3, 1065-1185. MR 2179728 (2006g:52029)
  • 11. D.P. Hardin, E.B. Saff, Discretizing manifolds via minimum energy points, Notices Amer. Math. Soc. 51 (2004), no. 10, 1186-1194. MR 2104914 (2006a:41049)
  • 12. D.P. Hardin, E.B. Saff, Minimal Riesz energy point configurations for rectifiable $ d$-dimensional manifolds, Adv. Math. 193 (2005), 174-204. MR 2132763 (2005m:49006)
  • 13. W. Habicht, B. L. van der Waerden, Lagerung von Punkten auf der Kugel, Math. Ann. 123 (1951), 223-234. MR 0042730 (13:154d)
  • 14. J.E. Hutchinson, Fractals and self-similarity, Indiana Univ. Math. J. 30 (1981), 743-747. MR 625600 (82h:49026)
  • 15. A.V. Kolushov, V.A. Yudin, Extremal dispositions of points on the sphere, Anal. Math. 23 (1997) no. 1, 25-34. MR 1630001 (99f:41039)
  • 16. N.S. Landkof, Foundations of modern potential theory, Springer-Verlag, Berlin-Heidelberg-New York, 1972. MR 0350027 (50:2520)
  • 17. A. Martinez-Finkelshtein, V. Maymeskul, E. Rakhmanov, E.B. Saff, Asymptotics for minimal discrete Riesz energy on curves in $ {\rm {\bf R}}^d$, Canad. J. Math. 56 (2004), 529-552. MR 2057285 (2005a:31010)
  • 18. P. Mattila, Geometry of sets and measures in Euclidean spaces. Fractals and Rectifiability, Cambridge Univ. Press, 1995. MR 1333890 (96h:28006)
  • 19. C.A. Rogers, Packing and covering, Cambridge Tracts in Mathematics and Mathematical Physics, vol. 54, Cambridge University Press, New York, 1964. MR 0172183 (30:2405)
  • 20. J.J. Thomson, On the Structure of the Atom: an Investigation of the Stability and Periods of Oscillation of a number of Corpuscles arranged at equal intervals around the Circumference of a Circle; with Application of the results to the Theory of Atomic Structure, Philosophical Magazine, Sixth Series, 7 (1904), 237-265.
  • 21. B. L. van der Waerden, Punkte auf der Kugel. Drei Zus $ {\rm \ddot{a}}$tze, Math. Ann. 125 (1952), 213-222. MR 0050912 (14:401c)
  • 22. V.A. Yudin, The minimum of potential energy of a system of point charges, Discrete Math. Appl. Vol. 3, No. 1 (1993), 75-81. MR 1181534 (93f:31008)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 11K41, 70F10, 28A78, 78A30, 52A40

Retrieve articles in all journals with MSC (2000): 11K41, 70F10, 28A78, 78A30, 52A40


Additional Information

S. V. Borodachov
Affiliation: School of Mathematics, Georgia Institute of Technology, Atlanta, Georgia, 30332
Email: borodasv@math.gatech.edu

D. P. Hardin
Affiliation: Department of Mathematics, Vanderbilt University, Nashville, Tennessee 37240
Email: doug.hardin@vanderbilt.edu

E. B. Saff
Affiliation: Department of Mathematics, Vanderbilt University, Nashville, Tennessee 37240
Email: Edward.B.Saff@Vanderbilt.edu

DOI: https://doi.org/10.1090/S0002-9939-07-08975-7
Keywords: Best-packing points, sphere packing, rectifiable set, Thomson problem, packing measure, minimal discrete Riesz energy, hard spheres problem
Received by editor(s): April 19, 2006
Published electronically: April 10, 2007
Additional Notes: The research of the second author was supported, in part, by the U. S. National Science Foundation under grants DMS-0505756 and DMS-0532154
The research of the third author was supported, in part, by the U. S. National Science Foundation under grant DMS-0532154.
Communicated by: David Preiss
Article copyright: © Copyright 2007 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society