Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 

 

Asymptotics of best-packing on rectifiable sets


Authors: S. V. Borodachov, D. P. Hardin and E. B. Saff
Journal: Proc. Amer. Math. Soc. 135 (2007), 2369-2380
MSC (2000): Primary 11K41, 70F10, 28A78; Secondary 78A30, 52A40
Published electronically: April 10, 2007
MathSciNet review: 2302558
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We investigate the asymptotic behavior, as $ N$ grows, of the largest minimal pairwise distance of $ N$ points restricted to an arbitrary compact rectifiable set embedded in Euclidean space, and we find the limit distribution of such optimal configurations. For this purpose, we compare best-packing configurations with minimal Riesz $ s$-energy configurations and determine the $ s$-th root asymptotic behavior (as $ s\to \infty)$ of the minimal energy constants.

We show that the upper and the lower dimension of a set defined through the Riesz energy or best-packing coincides with the upper and lower Minkowski dimension, respectively.

For certain sets in $ {\rm {\bf R}}^d$ of integer Hausdorff dimension, we show that the limiting behavior of the best-packing distance as well as the minimal $ s$-energy for large $ s$ is different for different subsequences of the cardinalities of the configurations.


References [Enhancements On Off] (What's this?)

  • 1. N.N. Andreev, On positions of points with minimal energy, Papers of the V.A. Steklov Math. Institute 219 (1997), 27-31.
  • 2. Károly Böröczky Jr., Finite packing and covering, Cambridge Tracts in Mathematics, vol. 154, Cambridge University Press, Cambridge, 2004. MR 2078625
  • 3. S.V. Borodachov, D.P. Hardin, E.B. Saff, Asymptotics for discrete weighted minimal Riesz energy problems on rectifiable sets, Trans. Amer. Math. Soc., to appear.
  • 4. J. H. Conway and N. J. A. Sloane, Sphere packings, lattices and groups, 3rd ed., Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 290, Springer-Verlag, New York, 1999. With additional contributions by E. Bannai, R. E. Borcherds, J. Leech, S. P. Norton, A. M. Odlyzko, R. A. Parker, L. Queen and B. B. Venkov. MR 1662447
  • 5. Herbert Federer, Geometric measure theory, Die Grundlehren der mathematischen Wissenschaften, Band 153, Springer-Verlag New York Inc., New York, 1969. MR 0257325
  • 6. L. Fejes Tóth, Lagerungen in der Ebene, auf der Kugel und im Raum, Die Grundlehren der Mathematischen Wissenschaften in Einzeldarstellungen mit besonderer Berücksichtigung der Anwendungsgebiete, Band LXV, Springer-Verlag, Berlin-Göttingen-Heidelberg, 1953 (German). MR 0057566
  • 7. L. Fejes Tóth, Regular figures, A Pergamon Press Book, The Macmillan Co., New York, 1964. MR 0165423
  • 8. Siegfried Graf and Harald Luschgy, Foundations of quantization for probability distributions, Lecture Notes in Mathematics, vol. 1730, Springer-Verlag, Berlin, 2000. MR 1764176
  • 9. Peter M. Gruber, Optimum quantization and its applications, Adv. Math. 186 (2004), no. 2, 456–497. MR 2073915, 10.1016/j.aim.2003.07.017
  • 10. Thomas C. Hales, A proof of the Kepler conjecture, Ann. of Math. (2) 162 (2005), no. 3, 1065–1185. MR 2179728, 10.4007/annals.2005.162.1065
  • 11. D. P. Hardin and E. B. Saff, Discretizing manifolds via minimum energy points, Notices Amer. Math. Soc. 51 (2004), no. 10, 1186–1194. MR 2104914
  • 12. D. P. Hardin and E. B. Saff, Minimal Riesz energy point configurations for rectifiable 𝑑-dimensional manifolds, Adv. Math. 193 (2005), no. 1, 174–204. MR 2132763, 10.1016/j.aim.2004.05.006
  • 13. Walter Habicht and B. L. van der Waerden, Lagerung von Punkten auf der Kugel, Math. Ann. 123 (1951), 223–234 (German). MR 0042730
  • 14. John E. Hutchinson, Fractals and self-similarity, Indiana Univ. Math. J. 30 (1981), no. 5, 713–747. MR 625600, 10.1512/iumj.1981.30.30055
  • 15. A. V. Kolushov and V. A. Yudin, Extremal dispositions of points on the sphere, Anal. Math. 23 (1997), no. 1, 25–34 (English, with Russian summary). MR 1630001, 10.1007/BF02789828
  • 16. N. S. Landkof, Foundations of modern potential theory, Springer-Verlag, New York-Heidelberg, 1972. Translated from the Russian by A. P. Doohovskoy; Die Grundlehren der mathematischen Wissenschaften, Band 180. MR 0350027
  • 17. A. Martínez-Finkelshtein, V. Maymeskul, E. A. Rakhmanov, and E. B. Saff, Asymptotics for minimal discrete Riesz energy on curves in ℝ^{𝕕}, Canad. J. Math. 56 (2004), no. 3, 529–552. MR 2057285, 10.4153/CJM-2004-024-1
  • 18. Pertti Mattila, Geometry of sets and measures in Euclidean spaces, Cambridge Studies in Advanced Mathematics, vol. 44, Cambridge University Press, Cambridge, 1995. Fractals and rectifiability. MR 1333890
  • 19. C. A. Rogers, Packing and covering, Cambridge Tracts in Mathematics and Mathematical Physics, No. 54, Cambridge University Press, New York, 1964. MR 0172183
  • 20. J.J. Thomson, On the Structure of the Atom: an Investigation of the Stability and Periods of Oscillation of a number of Corpuscles arranged at equal intervals around the Circumference of a Circle; with Application of the results to the Theory of Atomic Structure, Philosophical Magazine, Sixth Series, 7 (1904), 237-265.
  • 21. B. L. van der Waerden, Punkte auf der Kugel. Drei Zusätze, Math. Ann. 125 (1952), 213–222 (German). MR 0050912
  • 22. V. A. Yudin, Minimum potential energy of a point system of charges, Diskret. Mat. 4 (1992), no. 2, 115–121 (Russian, with Russian summary); English transl., Discrete Math. Appl. 3 (1993), no. 1, 75–81. MR 1181534, 10.1515/dma.1993.3.1.75

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 11K41, 70F10, 28A78, 78A30, 52A40

Retrieve articles in all journals with MSC (2000): 11K41, 70F10, 28A78, 78A30, 52A40


Additional Information

S. V. Borodachov
Affiliation: School of Mathematics, Georgia Institute of Technology, Atlanta, Georgia, 30332
Email: borodasv@math.gatech.edu

D. P. Hardin
Affiliation: Department of Mathematics, Vanderbilt University, Nashville, Tennessee 37240
Email: doug.hardin@vanderbilt.edu

E. B. Saff
Affiliation: Department of Mathematics, Vanderbilt University, Nashville, Tennessee 37240
Email: Edward.B.Saff@Vanderbilt.edu

DOI: http://dx.doi.org/10.1090/S0002-9939-07-08975-7
Keywords: Best-packing points, sphere packing, rectifiable set, Thomson problem, packing measure, minimal discrete Riesz energy, hard spheres problem
Received by editor(s): April 19, 2006
Published electronically: April 10, 2007
Additional Notes: The research of the second author was supported, in part, by the U. S. National Science Foundation under grants DMS-0505756 and DMS-0532154
The research of the third author was supported, in part, by the U. S. National Science Foundation under grant DMS-0532154.
Communicated by: David Preiss
Article copyright: © Copyright 2007 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.