Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Perturbations and Weyl's theorem


Author: B. P. Duggal
Journal: Proc. Amer. Math. Soc. 135 (2007), 2899-2905
MSC (2000): Primary 47A10, 47A12, 47B20
DOI: https://doi.org/10.1090/S0002-9939-07-08799-0
Published electronically: May 8, 2007
MathSciNet review: 2317967
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: A Banach space operator $ T$ is completely hereditarily normaloid, $ T\in\mathcal{CHN}$, if either every part, and (also) $ T_p^{-1}$ for every invertible part $ T_p$, of $ T$ is normaloid or if for every complex number $ \lambda$ every part of $ T-\lambda I$ is normaloid. Sufficient conditions for the perturbation $ T+A$ of $ T\in\mathcal{CHN}$ by an algebraic operator $ A$ to satisfy Weyl's theorem are proved. Our sufficient conditions lead us to the conclusion that the conjugate operator $ (T+A)^*$ satisfies $ a$-Weyl's theorem.


References [Enhancements On Off] (What's this?)

  • 1. P. Aiena, Fredholm and Local Spectral Theory with Applications to Multipliers, Kluwer, 2004. MR 2070395 (2005e:47001)
  • 2. P. Aiena and J. R. Guillen, Weyl's theorem for perturbations of paranormal operators, Proc. Amer. Math. Soc., to appear.
  • 3. B.P. Duggal, Hereditarily normaloid operators, Extracta Math. 20(2005), 203-217.MR 2195202 (2006h:47033)
  • 4. B.P. Duggal, S. Djordjevic and C. Kubrusly, Kato type operators and Weyl's theorems, J. Math. Anal. Appl. 309(2005), 433-441. MR 2154126 (2006k:47007)
  • 5. N. Dunford and J. T. Schwartz, Linear Operators, Part I, Interscience, New York, 1964. MR 1009162 (90g:47001a)
  • 6. T. Furuta, Invitation to Linear Operators, Taylor and Francis, London, 2001.MR 1978629 (2004b:47001)
  • 7. Young Min Han and An-Hyun Kim, A note on $ *$-paranormal operators, Integ. Equat. Op. Th. 49(2004), 435-444.MR 2091469 (2005g:47039)
  • 8. R. E. Harte and W. Y. Lee, Another note on Weyl's theorem, Trans. Amer. Math. Soc. 349 (1997), 2115-2124.MR 1407492 (98j:47024)
  • 9. H. G. Heuser, Functional Analysis, John Wiley and Sons (1982). MR 0640429 (83m:46001)
  • 10. Mourad Oudghiri, Weyl's theorem and perturbations, Integr. Euat. Op. Th. 53(2005), 535-545.MR 2187437 (2006k:47027)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 47A10, 47A12, 47B20

Retrieve articles in all journals with MSC (2000): 47A10, 47A12, 47B20


Additional Information

B. P. Duggal
Affiliation: 8 Redwood Grove, Northfield Avenue, London W5 4SZ, England, United Kingdom
Email: bpduggal@yahoo.co.uk

DOI: https://doi.org/10.1090/S0002-9939-07-08799-0
Keywords: Banach space, $\mathcal{CHN}$-operator, algebraic operator, perturbation, Weyl's theorem
Received by editor(s): February 4, 2006
Received by editor(s) in revised form: June 1, 2006
Published electronically: May 8, 2007
Communicated by: Joseph A. Ball
Article copyright: © Copyright 2007 American Mathematical Society

American Mathematical Society