Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 

 

A decomposition for invariant tests of uniformity on the sphere


Author: Jean-Renaud Pycke
Journal: Proc. Amer. Math. Soc. 135 (2007), 2983-2993
MSC (2000): Primary 62G10, 62H11; Secondary 47G10, 20C15
Published electronically: May 8, 2007
MathSciNet review: 2317977
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We introduce a $ U$-statistic on which can be based a test for uniformity on the sphere. It is a simple function of the geometric mean of distances between points of the sample and consistent against all alternatives. We show that this type of $ U$-statistic, whose kernel is invariant by isometries, can be separated into a set of statistics whose limiting random variables are independent. This decomposition is obtained via the so-called canonical decomposition of a group representation. The distribution of the limiting random variables of the components under the null hypothesis is given. We propose an interpretation of Watson type identities between quadratic functionals of Gaussian processes in the light of this decomposition.


References [Enhancements On Off] (What's this?)

  • 1. Rabi Bhattacharya and Vic Patrangenaru, Large sample theory of intrinsic and extrinsic sample means on manifolds. I, Ann. Statist. 31 (2003), no. 1, 1–29. MR 1962498, 10.1214/aos/1046294456
  • 2. Rabi Bhattacharya and Vic Patrangenaru, Large sample theory of intrinsic and extrinsic sample means on manifolds. II, Ann. Statist. 33 (2005), no. 3, 1225–1259. MR 2195634, 10.1214/009053605000000093
  • 3. James Durbin and M. Knott, Components of Cramér-von Mises statistics. I, J. Roy. Statist. Soc. Ser. B 34 (1972), 290–307. MR 0365880
  • 4. James Durbin, M. Knott, and C. C. Taylor, Components of Cramér-von Mises statistics. II, J. Roy. Statist. Soc. Ser. B 37 (1975), 216–237. MR 0386136
  • 5. Evarist Giné M., Invariant tests for uniformity on compact Riemannian manifolds based on Sobolev norms, Ann. Statist. 3 (1975), no. 6, 1243–1266. MR 0388663
  • 6. P. E. Jupp. Sobolev tests of goodness of fit of distributions on compact riemannian manifolds. Ann. Statist. vol. 33, (2005), no. 6, 2957-2966.
  • 7. V. S. Koroljuk and Yu. V. Borovskich, Theory of 𝑈-statistics, Mathematics and its Applications, vol. 273, Kluwer Academic Publishers Group, Dordrecht, 1994. Translated from the 1989 Russian original by P. V. Malyshev and D. V. Malyshev and revised by the authors. MR 1472486
  • 8. Kanti V. Mardia and Peter E. Jupp, Directional statistics, Wiley Series in Probability and Statistics, John Wiley & Sons, Ltd., Chichester, 2000. Revised reprint of Statistics of directional data by Mardia [ MR0336854 (49 #1627)]. MR 1828667
  • 9. G. Peccati and M. Yor. Identities in law between quadratic functionals of bivariate Gaussian processes, through Fubini Theorems and symmetric projections. Preprint.
  • 10. Jean-Renaud Pycke, Sur une identité en loi entre deux fonctionnelles quadratiques du pont brownien, C. R. Math. Acad. Sci. Paris 340 (2005), no. 5, 373–376 (French, with English and French summaries). MR 2127113, 10.1016/j.crma.2005.01.024
  • 11. Louis Robin, Fonctions sphériques de Legendre et fonctions sphéroïdales. Tome II, Gauthier-Villars, Paris, 1958 (French). MR 0101928
  • 12. Louis Robin, Fonctions sphériques de Legendre et fonctions sphéroïdales. Tome III, Collection Technique et Scientifique du C. N. E. T. Gauthier-Villars, Paris, 1959 (French). MR 0109896
  • 13. G. Sansone, Orthogonal functions, Revised English ed. Translated from the Italian by A. H. Diamond; with a foreword by E. Hille. Pure and Applied Mathematics, Vol. IX, Interscience Publishers, Inc., New York; Interscience Publishers, Ltd., London, 1959. MR 0103368
  • 14. Robert J. Serfling, Approximation theorems of mathematical statistics, John Wiley & Sons, Inc., New York, 1980. Wiley Series in Probability and Mathematical Statistics. MR 595165
  • 15. Jean-Pierre Serre, Linear representations of finite groups, Springer-Verlag, New York-Heidelberg, 1977. Translated from the second French edition by Leonard L. Scott; Graduate Texts in Mathematics, Vol. 42. MR 0450380
  • 16. Zhan Shi and Marc Yor, On an identity in law for the variance of the Brownian bridge, Bull. London Math. Soc. 29 (1997), no. 1, 103–108. MR 1416415, 10.1112/S0024609396001920
  • 17. G. S. Watson, Goodness-of-fit tests on a circle, Biometrika 48 (1961), 109–114. MR 0131930

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 62G10, 62H11, 47G10, 20C15

Retrieve articles in all journals with MSC (2000): 62G10, 62H11, 47G10, 20C15


Additional Information

Jean-Renaud Pycke
Affiliation: Départment de Mathématiques, Université d’Évry Val d’Essone, Boulevard F. Mitterrand, F-91025 Evry Cedex, France
Email: jrpycke@univ-evry.fr, pycke@ccr.jussieu.fr

DOI: http://dx.doi.org/10.1090/S0002-9939-07-08804-1
Keywords: Goodness of fit test, $U$-statistics, group representations
Received by editor(s): January 1, 2006
Received by editor(s) in revised form: May 30, 2006
Published electronically: May 8, 2007
Communicated by: Edward C. Waymire
Article copyright: © Copyright 2007 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.