Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

On $ L^2$ cohomology of ACH Kähler manifolds


Author: Xiaodong Wang
Journal: Proc. Amer. Math. Soc. 135 (2007), 2949-2960
MSC (2000): Primary 53C55; Secondary 58J50
DOI: https://doi.org/10.1090/S0002-9939-07-08838-7
Published electronically: February 9, 2007
MathSciNet review: 2317973
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We discuss a class of complete Kähler manifolds which are asymptotically complex hyperbolic near infinity. The main result is a sharp vanishing theorem for the second $ L^2$ cohomology of such manifolds under certain assumptions. The borderline case characterizes a Kähler-Einstein manifold constructed by Calabi.


References [Enhancements On Off] (What's this?)

  • [A] M. Anderson, Einstein metrics with prescribed conformal infinity on $ 4$-manifolds, arXiv math.DG/0105243.
  • [BG] R. L. Bishop and S. I. Goldberg, On the second cohomology group of a Kaehler manifold of positive curvature, Proc. Amer. Math. Soc. 16 (1965), 119-122. MR 0172221 (30:2441)
  • [Biq] O. Biquard, Métriques d'Einstein asymptotiquement symétriques, Astérisque (2000), no. 265, vi+109. MR 1760319 (2001k:53079)
  • [Cal] E. Calabi, Métriques kählériennes et fibrés holomorphes, Ann. Sci. École Norm. Sup. (4) 12 (1979), no. 2, 269-294. MR 0543218 (83m:32033)
  • [Cor] K. Corlette, Hausdorff dimensions of limit sets. I, Invent. Math. 102 (1990), no. 3, 521-541. MR 1074486 (91k:58067)
  • [CY] S. Cheng and S. Yau, On the existence of a complete Kähler metric on noncompact complex manifolds and the regularity of Fefferman's equation, Comm. Pure Appl. Math. 33 (1980), no. 4, 507-544. MR 0575736 (82f:53074)
  • [EM] C. L. Epstein and R. B. Melrose, Shrinking tubes and the $ \overline{\partial }$-Neumann problem, unpublished.
  • [EMM] C. L. Epstein, R. Melrose, and G. Mendoza, Resolvent of the Laplacian on strictly pseudoconvex domains, Acta Math. 167 (1991), no. 1-2, 1-106. MR 1111745 (92i:32016)
  • [Kle] P. Klembeck, Kähler metrics of negative curvature, the Bergmann metric near the boundary, and the Kobayashi metric on smooth bounded strictly pseudoconvex sets, Indiana Univ. Math. J. 27 (1978), no. 2, 275-282. MR 0463506 (57:3455)
  • [Lee] J. Lee, The Spectrum of an Asymptotically Hyperbolic Einstein Manifold, Comm. Anal. Geom. 3 (1995) 253-271.MR 1362652 (96h:58176)
  • [LY] P. Li and S. Yau, Asymptotically flat complete Kähler manifolds, Complex geometry (Osaka, 1990), Lecture Notes in Pure and Appl. Math., vol. 143, Dekker, New York, 1993, pp. 131-144. MR 1201607 (94a:53101)
  • [Man] A. Manning, Topological entropy for geodesic flows, Ann. of Math. (2) 110 (1979), no. 3, 567-573. MR 0554385 (81e:58044)
  • [Ma] R. Mazzeo, The Hodge Theory of a Conformally Compact Metric, JDG 28 (1988) 309-339.MR 0961517 (89i:58005)
  • [W1] Xiaodong Wang, On conformally compact Einstein manifolds, Math. Res. Lett. 8 (2001), no. 5-6, 671-688. MR 1879811 (2003d:53075)
  • [W2] Xiaodong Wang, On the $ L\sp 2$-cohomology of a convex cocompact hyperbolic manifold, Duke Math. J. 115 (2002), no. 2, 311-327. MR 1944573 (2003m:58048)
  • [WY] E. Witten and S.-T. Yau, Connectedness of the Boundary in the ADS/CFT Correspondence, Adv. Theor. Math. Phys. 3 (1999) 1635-1655. MR 1812133 (2002b:53071)
  • [Wu] H. Wu, The Bochner technique in differential geometry, Math. Rep. 3 (1988), no. 2, i-xii and 289-538. MR 1079031 (91h:58031)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 53C55, 58J50

Retrieve articles in all journals with MSC (2000): 53C55, 58J50


Additional Information

Xiaodong Wang
Affiliation: Department of Mathematics, Michigan State University, East Lansing, Michigan 48824
Email: xwang@math.msu.edu

DOI: https://doi.org/10.1090/S0002-9939-07-08838-7
Received by editor(s): January 17, 2006
Received by editor(s) in revised form: May 24, 2006
Published electronically: February 9, 2007
Communicated by: Richard A. Wentworth
Article copyright: © Copyright 2007 American Mathematical Society

American Mathematical Society