On pointed Hopf algebras associated to some conjugacy classes in

Authors:
Nicolás Andruskiewitsch and Shouchuan Zhang

Journal:
Proc. Amer. Math. Soc. **135** (2007), 2723-2731

MSC (2000):
Primary 16W30

Published electronically:
February 16, 2007

MathSciNet review:
2317945

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We show that any pointed Hopf algebra with infinitesimal braiding associated to the conjugacy class of is infinite-dimensional, if either the order of is odd, or all cycles in the decomposition of as a product of disjoint cycles have odd order except for exactly two transpositions.

**[AG1]**Nicolás Andruskiewitsch and Matías Graña,*Braided Hopf algebras over non-abelian finite groups*, Bol. Acad. Nac. Cienc. (Córdoba)**63**(1999), 45–78 (English, with English and Spanish summaries). Colloquium on Operator Algebras and Quantum Groups (Spanish) (Vaquerías, 1997). MR**1714540****[AG2]**Nicolás Andruskiewitsch and Matías Graña,*From racks to pointed Hopf algebras*, Adv. Math.**178**(2003), no. 2, 177–243. MR**1994219**, 10.1016/S0001-8708(02)00071-3**[AS1]**N. Andruskiewitsch and H.-J. Schneider,*Lifting of quantum linear spaces and pointed Hopf algebras of order 𝑝³*, J. Algebra**209**(1998), no. 2, 658–691. MR**1659895**, 10.1006/jabr.1998.7643**[AS2]**Nicolás Andruskiewitsch and Hans-Jürgen Schneider,*Finite quantum groups and Cartan matrices*, Adv. Math.**154**(2000), no. 1, 1–45. MR**1780094**, 10.1006/aima.1999.1880**[AS3]**Nicolás Andruskiewitsch and Hans-Jürgen Schneider,*Pointed Hopf algebras*, New directions in Hopf algebras, Math. Sci. Res. Inst. Publ., vol. 43, Cambridge Univ. Press, Cambridge, 2002, pp. 1–68. MR**1913436**, 10.2977/prims/1199403805**[AS4]**-,*On the classification of finite-dimensional pointed Hopf algebras*, preprint`math.QA/0502157`, Ann. Math., to appear.**[DPR]**R. Dijkgraaf, V. Pasquier, and P. Roche,*Quasi Hopf algebras, group cohomology and orbifold models*, Nuclear Phys. B Proc. Suppl.**18B**(1990), 60–72 (1991). Recent advances in field theory (Annecy-le-Vieux, 1990). MR**1128130**, 10.1016/0920-5632(91)90123-V**[FK]**Sergey Fomin and Anatol N. Kirillov,*Quadratic algebras, Dunkl elements, and Schubert calculus*, Advances in geometry, Progr. Math., vol. 172, Birkhäuser Boston, Boston, MA, 1999, pp. 147–182. MR**1667680****[G1]**Matías Graña,*On Nichols algebras of low dimension*, New trends in Hopf algebra theory (La Falda, 1999) Contemp. Math., vol. 267, Amer. Math. Soc., Providence, RI, 2000, pp. 111–134. MR**1800709**, 10.1090/conm/267/04267**[H]**I. Heckenberger,*The Weyl groupoid of a Nichols algebra of diagonal type*, Invent. Math.**164**(2006), no. 1, 175–188. MR**2207786**, 10.1007/s00222-005-0474-8**[MS]**Alexander Milinski and Hans-Jürgen Schneider,*Pointed indecomposable Hopf algebras over Coxeter groups*, New trends in Hopf algebra theory (La Falda, 1999) Contemp. Math., vol. 267, Amer. Math. Soc., Providence, RI, 2000, pp. 215–236. MR**1800714**, 10.1090/conm/267/04272**[M]**Susan Montgomery,*Hopf algebras and their actions on rings*, CBMS Regional Conference Series in Mathematics, vol. 82, Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI, 1993. MR**1243637****[W]**S. J. Witherspoon,*The representation ring of the quantum double of a finite group*, J. Algebra**179**(1996), no. 1, 305–329. MR**1367852**, 10.1006/jabr.1996.0014

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (2000):
16W30

Retrieve articles in all journals with MSC (2000): 16W30

Additional Information

**Nicolás Andruskiewitsch**

Affiliation:
FaMAF, Universidad Nacional de Córdoba. CIEM – CONICET, (5000) Ciudad Universitaria, Córdoba, Argentina

Email:
andrus@mate.uncor.edu

**Shouchuan Zhang**

Affiliation:
Department of Mathematics, Hunan University, Changsha 410082, People’s Republic of China

Email:
z9491@yahoo.com.cn

DOI:
https://doi.org/10.1090/S0002-9939-07-08880-6

Received by editor(s):
November 1, 2005

Received by editor(s) in revised form:
May 25, 2006

Published electronically:
February 16, 2007

Additional Notes:
The work of the first author was partially supported by CONICET, Fund. Antorchas, Agencia Córdoba Ciencia, TWAS (Trieste), ANPCyT and Secyt (UNC). Results of this paper were obtained during a visit of the first author to the Hunan University, Changsha (China)

Communicated by:
Martin Lorenz

Article copyright:
© Copyright 2007
American Mathematical Society

The copyright for this article reverts to public domain 28 years after publication.