Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



Unprovability of sharp versions of Friedman's sine-principle

Author: Andrey Bovykin
Journal: Proc. Amer. Math. Soc. 135 (2007), 2967-2973
MSC (2000): Primary 03F30, 03F99; Secondary 05D10
Published electronically: May 8, 2007
MathSciNet review: 2317975
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: For every $ n\geq 1$ and every function $ F$ of one argument, we introduce the statement $ \SP_F^n$: ``for all $ m$, there is $ N$ such that for any set $ A=\{a_1, a_2, \ldots, a_N\}$ of rational numbers, there is $ H\subseteq A$ of size $ m$ such that for any two $ n$-element subsets $ a_{i_1}< a_{i_2}<\cdots < a_{i_n}$ and $ a_{i_1}< a_{k_2}< \cdots < a_{k_n}$ in $ H$, we have

$\displaystyle \vert\sin(a_{i_1}\cdot a_{i_2} \cdots a_{i_n}) - \sin(a_{i_1}\cdot a_{k_2} \cdots a_{k_n} )\vert< F(i_1)''. $

We prove that for $ n\geq 2$ and any function $ F(x)$ eventually dominated by $ ({2 \over 3})^{\log^{(n-1)}(x)}$, the principle $ \SP_F^{n+1}$ is not provable in $ I\Sigma_n$. In particular, the statement $ \forall n \SP_{({2 \over 3})^{\log^{(n-1)}}}^n$ is not provable in Peano Arithmetic. In dimension 2, the result is: $ I\Sigma_1$ does not prove $ \SP^2_F$, where $ F(x)=({2 \over 3})^{\sqrt[A^{-1}(x)]{x}}$ and $ A^{-1}$ is the inverse of the Ackermann function.

References [Enhancements On Off] (What's this?)

  • 1. Bovykin, A. (2005). Model-theoretic treatment of threshold results for PH. Manuscript, downloadable from$ \sim$andrey/research.html.
  • 2. Carlucci L., Lee G., Weiermann, A. (2005). Classifying the phase transition threshold for regressive Ramsey functions. Submitted.
  • 3. Friedman, H. (2002). A posting in the internet forum FOM. June 8, 2002.
  • 4. N. I. Fel′dman, The approximation of certain transcendental numbers. I. Approximation of logarithms of algebraic numbers, Izvestiya Akad. Nauk SSSR. Ser. Mat. 15 (1951), 53–74 (Russian). MR 0039768
  • 5. Akihiro Kanamori and Kenneth McAloon, On Gödel incompleteness and finite combinatorics, Ann. Pure Appl. Logic 33 (1987), no. 1, 23–41. MR 870685,
  • 6. Jussi Ketonen and Robert Solovay, Rapidly growing Ramsey functions, Ann. of Math. (2) 113 (1981), no. 2, 267–314. MR 607894,
  • 7. Kojman, M., Lee, G., Omri, E., Weiermann, A. (2005). Sharp thresholds for the phase transition between primitive recursive and ackermannian Ramsey numbers. Submitted.
  • 8. Lee, G. (2005). Phase transitions in axiomatic thought. Ph.D. Thesis, University of Münster.
  • 9. K. Mahler, On the approximation of 𝜋, Nederl. Akad. Wetensch. Proc. Ser. A. 56=Indagationes Math. 15 (1953), 30–42. MR 0054660
  • 10. Paris, J., Harrington, L. (1977). A mathematical incompleteness in Peano arithmetic. Handbook for Mathematical Logic, North-Holland.
  • 11. Georges Rhin and Carlo Viola, The group structure for 𝜁(3), Acta Arith. 97 (2001), no. 3, 269–293. MR 1826005,

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 03F30, 03F99, 05D10

Retrieve articles in all journals with MSC (2000): 03F30, 03F99, 05D10

Additional Information

Andrey Bovykin
Affiliation: Steklov Mathematical Institute, Fontanka 27, St. Petersburg, Russia; Liverpool University, Liverpool, United Kingdom

Keywords: Unprovable combinatorial statements, irrationality measure of $\pi$, dynamical system, Paris-Harrington Principle, Kanamori-McAloon Principle.
Received by editor(s): June 7, 2006
Published electronically: May 8, 2007
Communicated by: Julia Knight
Article copyright: © Copyright 2007 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.