Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 

 

Unprovability of sharp versions of Friedman's sine-principle


Author: Andrey Bovykin
Journal: Proc. Amer. Math. Soc. 135 (2007), 2967-2973
MSC (2000): Primary 03F30, 03F99; Secondary 05D10
DOI: https://doi.org/10.1090/S0002-9939-07-08933-2
Published electronically: May 8, 2007
MathSciNet review: 2317975
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: For every $ n\geq 1$ and every function $ F$ of one argument, we introduce the statement $ \SP_F^n$: ``for all $ m$, there is $ N$ such that for any set $ A=\{a_1, a_2, \ldots, a_N\}$ of rational numbers, there is $ H\subseteq A$ of size $ m$ such that for any two $ n$-element subsets $ a_{i_1}< a_{i_2}<\cdots < a_{i_n}$ and $ a_{i_1}< a_{k_2}< \cdots < a_{k_n}$ in $ H$, we have

$\displaystyle \vert\sin(a_{i_1}\cdot a_{i_2} \cdots a_{i_n}) - \sin(a_{i_1}\cdot a_{k_2} \cdots a_{k_n} )\vert< F(i_1)''. $

We prove that for $ n\geq 2$ and any function $ F(x)$ eventually dominated by $ ({2 \over 3})^{\log^{(n-1)}(x)}$, the principle $ \SP_F^{n+1}$ is not provable in $ I\Sigma_n$. In particular, the statement $ \forall n \SP_{({2 \over 3})^{\log^{(n-1)}}}^n$ is not provable in Peano Arithmetic. In dimension 2, the result is: $ I\Sigma_1$ does not prove $ \SP^2_F$, where $ F(x)=({2 \over 3})^{\sqrt[A^{-1}(x)]{x}}$ and $ A^{-1}$ is the inverse of the Ackermann function.


References [Enhancements On Off] (What's this?)

  • 1. Bovykin, A. (2005). Model-theoretic treatment of threshold results for PH. Manuscript, downloadable from http://logic.pdmi.ras.ru/$ \sim$andrey/research.html.
  • 2. Carlucci L., Lee G., Weiermann, A. (2005). Classifying the phase transition threshold for regressive Ramsey functions. Submitted.
  • 3. Friedman, H. (2002). A posting in the internet forum FOM. June 8, 2002. http://www.cs.nyu.edu/pipermail/fom/2002-June/005584.html
  • 4. N. I. Fel′dman, The approximation of certain transcendental numbers. I. Approximation of logarithms of algebraic numbers, Izvestiya Akad. Nauk SSSR. Ser. Mat. 15 (1951), 53–74 (Russian). MR 0039768
  • 5. Akihiro Kanamori and Kenneth McAloon, On Gödel incompleteness and finite combinatorics, Ann. Pure Appl. Logic 33 (1987), no. 1, 23–41. MR 870685, https://doi.org/10.1016/0168-0072(87)90074-1
  • 6. Jussi Ketonen and Robert Solovay, Rapidly growing Ramsey functions, Ann. of Math. (2) 113 (1981), no. 2, 267–314. MR 607894, https://doi.org/10.2307/2006985
  • 7. Kojman, M., Lee, G., Omri, E., Weiermann, A. (2005). Sharp thresholds for the phase transition between primitive recursive and ackermannian Ramsey numbers. Submitted.
  • 8. Lee, G. (2005). Phase transitions in axiomatic thought. Ph.D. Thesis, University of Münster.
  • 9. K. Mahler, On the approximation of 𝜋, Nederl. Akad. Wetensch. Proc. Ser. A. 56=Indagationes Math. 15 (1953), 30–42. MR 0054660
  • 10. Paris, J., Harrington, L. (1977). A mathematical incompleteness in Peano arithmetic. Handbook for Mathematical Logic, North-Holland.
  • 11. Georges Rhin and Carlo Viola, The group structure for 𝜁(3), Acta Arith. 97 (2001), no. 3, 269–293. MR 1826005, https://doi.org/10.4064/aa97-3-6

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 03F30, 03F99, 05D10

Retrieve articles in all journals with MSC (2000): 03F30, 03F99, 05D10


Additional Information

Andrey Bovykin
Affiliation: Steklov Mathematical Institute, Fontanka 27, St. Petersburg, Russia; Liverpool University, Liverpool, United Kingdom
Email: andrey@logic.pdmi.ras.ru

DOI: https://doi.org/10.1090/S0002-9939-07-08933-2
Keywords: Unprovable combinatorial statements, irrationality measure of $\pi$, dynamical system, Paris-Harrington Principle, Kanamori-McAloon Principle.
Received by editor(s): June 7, 2006
Published electronically: May 8, 2007
Communicated by: Julia Knight
Article copyright: © Copyright 2007 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.