ON UNBOUNDEDNESS OF MAXIMAL OPERATORS
FOR DIRECTIONAL HILBERT TRANSFORMS

G. A. KARAGULYAN

Abstract. We show that for any infinite set of unit vectors U in \mathbb{R}^2 the maximal operator defined by
$$H_U f(x) = \sup_{u \in U} \left| \frac{1}{pv} \int_{-\infty}^{\infty} f(x - tu) \frac{t}{t} dt \right|, \quad x \in \mathbb{R}^2,$$
is not bounded in $L^2(\mathbb{R}^2)$.

1. Introduction

For a rapidly decreasing function f and a unit vector $u = (\cos \theta, \sin \theta), \theta \in [0, 2\pi]$, we define
$$H_u f(x, y) = \frac{1}{pv} \int_{-\infty}^{\infty} f(x - t \cos \theta, y - t \sin \theta) \frac{t}{t} dt,$$
which is the one-dimensional Hilbert transform along the direction u. It is well known that this operator can be extended to a bounded operator from $L^p(\mathbb{R}^2)$ to itself when $1 < p < \infty$. In this paper we study operators
$$H_U f(x, y) = \sup_{u \in U} |H_u f(x, y)|,$$
where U is a set of unit vectors u in \mathbb{R}^2. Analogous operators for the maximal functions are properly investigated. The case of lacunary U was first considered in the papers [18], [7], [15]. A final result was obtained by A. Nagel, E. M. Stein and S. Wainger in [15]. They proved the boundedness of the norms of these operators in $L^p(\mathbb{R}^2), 1 < p < \infty$, for a lacunary U. Upper bounds of such operators depending on the cardinality $\# U$ of the set U are considered in the papers [1], [2], [3], [10], [17]. The definitive estimates are due to N. Katz ([13], [14]), where he obtained a logarithmic order for the norms of two different maximal operators depending on $\# U$. Various generalizations of these results were considered in series of papers ([1], [2], [3], [10], [17]).

As for the operator (1), there were no results except for the bound
$$\|H_U f(x)\|_{L^2} \lesssim \log \# U \|f\|_{L^2}.$$
This is an immediate consequence of the Menshov-Rademacher theorem (see [9] or [12]), in spite of the fact that in Katz’s theorems a subtle range of ideas are used.
It was not even known whether or not H_U is bounded in L^2 for an infinite lacunary set U. The main result of the paper is unboundedness of H_U in L^2 for any infinite U.

Theorem 1. For any infinite set of unit vectors U the operator H_U cannot be extended to a bounded operator from $L^2(\mathbb{R}^2)$ to $L^p(\mathbb{R}^2)$ for all $1 \leq p < \infty$.

This theorem is an immediate consequence of the following estimate.

Theorem 2. If U is a finite set and $1 \leq p < \infty$, then $\|H_U\|_{L^2 \to L^p} \geq c \sqrt{\log \#U}$, where $c > 0$ is an absolute constant.

The author is very grateful to M. T. Lacey for his hospitality during the two visits to Georgia Tech in 2003 and 2004, and for helpful conversations about these problems.

2. Proof of the Theorems

Let $f_n(x)$, $n = 1, 2, \cdots, 2^m - 1$ ($f_n \neq 0$), be a system of functions defined on the square

$$Q = [-\pi, \pi] \times [-\pi, \pi].$$

In some places we shall use for $f_n(x)$ double numbering, defined by

$$f_j^{(k)}(x) = f_n(x), \quad n = 2^k + j - 1, \quad 1 \leq j \leq 2^k, \quad k = 0, 1, \cdots, m - 1.$$

We shall say the sequence $f_n(x) = f_j^{(k)}(x)$ is a tree-system, if

$$\text{(2) } \text{supp } f_{2^j-1}^{(k+1)} \subset \{x \in Q : f_j^{(k)}(x) > 0\}, \quad \text{supp } f_{2^j}^{(k+1)} \subset \{x \in Q : f_j^{(k)}(x) < 0\}.$$

Applying (2) several times we get

$$\text{supp } f_{2^j}^{(k+r)} \subset \{x \in Q : f_j^{(k)}(x) > 0\} \iff i \in (2^r j - 2^r, 2^r j - 2^r - 1],$$

$$\text{supp } f_{2^j}^{(k+r)} \subset \{x \in Q : f_j^{(k)}(x) < 0\} \iff i \in (2^r j - 2^r - 1, 2^r j],$$

and then

$$\text{(3) } \text{supp } f_{2^j}^{(k+r)} \cap \{x \in Q : f_j^{(k)}(x) > 0\} = \emptyset \iff i \notin (2^r j - 2^r, 2^r j - 2^r - 1],$$

$$\text{(4) } \text{supp } f_{2^j}^{(k+r)} \cap \{x \in Q : f_j^{(k)}(x) < 0\} = \emptyset \iff i \notin (2^r j - 2^r - 1, 2^r j].$$

The following lemma for the Haar system has been proved by E. M. Nikishin and P. L. Ul’yanov [12], and we use the same idea to prove a general one (see also [12]).

Lemma 1. If $f_n(x)$, $x \in Q$, $n = 1, 2, \cdots, 2^m - 1$, is tree-system, then there exists a permutation σ of the numbers $\{1, 2, \cdots, 2^m - 1\}$ such that

$$\sup_{1 \leq l < 2^m} \left| \sum_{n=1}^{l} f_{\sigma(n)}(x) \right| \geq \frac{1}{3} \sum_{n=1}^{2^m - 1} |f_n(x)|.$$

Proof. We connect with each $f_n(x)$, $n = 2^k + j - 1$, a number

$$t_n = \frac{2j - 1}{2^{k+1}} \in [0, 1].$$

Note they are not equal for different n’s. Define the permutation σ so that

$$t_{\sigma(1)} < t_{\sigma(2)} < \cdots < t_{\sigma(2^m-1)}.$$
We shall prove that for any \(x \in Q \) there exists a number \(l = l(x) \) with

\[
(5) \quad f_{\sigma(n)}(x) \geq 0, \text{ if } n > l(x), \\
(6) \quad f_{\sigma(n)}(x) \leq 0, \text{ if } n \leq l(x).
\]

Defining

\[
l = l(x) = \sup\{n : 1 \leq n < 2^m, f_{\sigma(n)}(x) \leq 0\},
\]

we shall have (5) immediately and if \(\nu = \sigma(l(x) + 1) \), then

\[
(7) \quad f_{\nu}(x) > 0.
\]

To prove (5) it is enough to show that if (7) holds and \(t_n > t_{\nu} \), then \(f_n(x) \geq 0 \).

Suppose

\[
\nu = 2^k + j - 1, \quad n = 2^r + i - 1.
\]

According to the assumption

\[
(8) \quad t_{\nu} = \frac{2j - 1}{2^{k+1}} < \frac{2i - 1}{2^{s+1}} = t_n.
\]

If \(s > k \), then \(s = k + r \quad (r > 0) \). From (8) we get

\[
i > 2^r j - 2^{r-1}.
\]

Therefore by (3) we obtain

\[
supp f_n \cap \{f_{\nu} > 0\} = \emptyset.
\]

Since \(f_{\nu}(x) > 0 \) we get \(f_n(x) = 0 \).

If \(s < k \), then \(k = s + r \quad (r > 0) \). Applying (8) we get

\[
j \leq 2^r i - 2^{r-1}.
\]

Hence by (3) we have

\[
supp f_{\nu} \cap \{f_n < 0\} = \emptyset.
\]

By (7) we conclude \(f_n(x) \geq 0 \). So (5) and (6) are proved. Using them, we obtain

\[
\max_{1 \leq l < 2^m} \left| \sum_{n=1}^{l} f_{\sigma(n)}(x) \right| = \max_{1 \leq l(x)} \left| \sum_{n=1}^{l(x)} f_{\sigma(n)}(x) \right| > \frac{1}{3} \sum_{n=1}^{2^m-1} |f_{\sigma(n)}(x)|.
\]

If

\[
- \sum_{n=1}^{l(x)} f_{\sigma(n)}(x) = \sum_{n=1}^{l(x)} |f_{\sigma(n)}(x)| < \frac{1}{3} \sum_{n=1}^{2^m-1} |f_{\sigma(n)}(x)|,
\]

then we get

\[
\sum_{n=1}^{2^m-1} |f_{\sigma(n)}(x)| > 2 \sum_{n=1}^{l(x)} |f_{\sigma(n)}(x)|
\]

and therefore

\[
\left| \sum_{n=1}^{l(x)+1} f_{\sigma(n)}(x) \right| \geq \left| \sum_{n=1}^{l(x)+1} f_{\sigma(n)}(x) \right| - \left| \sum_{n=1}^{l(x)} f_{\sigma(n)}(x) \right| > \frac{1}{2} \sum_{n=1}^{2^m-1} |f_{\sigma(n)}(x)| > \frac{1}{3} \sum_{n=1}^{2^m-1} |f_{\sigma(n)}(x)|.
\]
Thus we conclude
\[
\sup_{1 \leq l < 2^m} \left| \sum_{n=1}^{l} f_{\sigma(n)}(x) \right| > \frac{1}{3} \sum_{n=1}^{2^m-1} \left| f_{\sigma(n)}(x) \right| = \frac{1}{3} \sum_{n=1}^{2^m-1} |f_n(x)|, \quad \square
\]

Fix a Schwartz function \(\phi(x) \) with
\[
(9) \quad \phi(x) > 0, \quad \int_{\mathbb{R}} \phi(x) dx = 1, \quad \text{supp} \widehat{\phi} \subset [-1, 1].
\]
We consider operators
\[
(10) \quad \Phi_n(f) = \Phi_n(x, y, f) = n^2 \int_{\mathbb{R}} f(x - t, y - s) \phi(nt) \phi(ns) dt ds, \quad n = 1, 2, \ldots.
\]
Applying (10), for any \(f \in L^\infty(\mathbb{R}^2) \) we get
\[
(11) \quad \inf_{(x, y) \in \mathbb{R}^2} f(x, y) \leq \Phi_n(x, y, f) \leq \sup_{(x, y) \in \mathbb{R}^2} f(x, y),
\]
\[
(12) \quad \text{supp} \widehat{\Phi_n(f)} \subset [-n, n] \times [-n, n].
\]
If in addition \(f \) is compactly supported, using a standard argument, we conclude
\[
(13) \quad \| \Phi_n(f) - f \|_{L^2} \to 0, \quad \text{as} \ n \to \infty.
\]
If
\[
(14) \quad n = 2^k + j - 1, \quad 1 \leq j \leq 2^k, \quad k = 0, 1, \ldots, m - 1,
\]
then we denote
\[
\bar{n} = 2^{k-1} + \left[\frac{j+1}{2} \right],
\]
where \(\lfloor \cdot \rfloor \) means an integer part of a number. Using this notation we may write the conditions (2) by
\[
(15) \quad \text{supp} f_{\bar{n}} \subset \{(-1)^{j+1} \cdot f_{\bar{n}} > 0\}.
\]
We shall consider sectors defined by
\[
\{ (x, y) \in \mathbb{R}^2 : x + iy = re^{i\theta}, r \geq 0, \alpha \leq \theta \leq \beta \}
\]
where \(0 \leq \alpha < \beta \leq 2\pi \). Some arguments in the proof of following lemma are derived from the paper [11].

Lemma 2. Let \(S_n, n = 1, 2, \ldots, n = 2^m - 1, \) be sectors on the plane. Then there exist functions \(f_n \in L^2(\mathbb{R}^2), n = 1, 2, \ldots, \nu, \) such that
\[
(16) \quad \text{supp} \widehat{f_n} \subset S_n,
\]
\[
(17) \quad \sum_{j=1}^{\nu} \|f_j\|_{L^2} \leq c_1,
\]
\[
(18) \quad |\{(x, y) \in Q : \max_{1 \leq \nu} |\sum_{j=1}^{\nu} f_{\sigma(j)}(x, y)| > c_3 \sqrt{\log \nu} \}| > c_2,
\]
where \(\sigma \) is the permutation from Lemma [1] and all the constants are absolute.

Proof. We will assume (14) everywhere below. For a given \(\varepsilon > 0 \) define sets \(E_n = E_1^{(k)} \subset Q \) \((E_1 = E_1^{(0)} = Q), g_n \in L^\infty(\mathbb{R}^2) \) and \(p_n, q_n \in \mathbb{Z} \) with conditions
a) \(E_n = \{ (x, y) \in \mathbb{R}^2 :(-1)^{j+1} \cos(p_n x + q_n y) > 0 \}, n = 2, 3, \ldots, \nu, \)
b) \(0 \leq g_n \leq 1, \|g_n - I_{E_n}\|_{L^2} \leq \varepsilon, n = 1, 2, \ldots, \nu, \)
c) \(\text{supp} \widehat{g_n} \subset S_n - (p_n, q_n), n = 1, 2, \ldots, \nu, \)
d) \(\int_{E_n} |\cos(p_n x + q_n y)|\ dx\ dy > \frac{|E_n|}{3}, \)
We do it by induction. Take \(E_1 = E_1^{(0)} = Q \). According to (13) there exists \(l > 0 \) with
\[
\|\Phi_l(\mathbb{I}_{E_1}) - \mathbb{I}_{E_1}\|_{L^2} < \varepsilon.
\]
Define \(g_1 = \Phi_l(\mathbb{I}_{E_1}) \) and then applying (11) we get b) for \(n = 1 \). We note that if \(E \) is a measurable set then
\[
(19) \quad \int_E |\cos(px + qy)|dxdy \geq \int_E \cos^2(px + qy)dxdy = \frac{|E|}{2} + \int_E \cos(2(px + qy))dxdy \to \frac{|E|}{2} \text{ as } |p|, |q| \to \infty.
\]
This observation shows that for sufficiently large \(p_1 = p \) and \(q_1 = q \) we shall have condition d) for \(n = 1 \). On the other hand by (12) \(\text{supp} \hat{g}_1 \) is bounded. Thus for an appropriate \(p_1, q_1 \) we will have also c) (with \(n = 1 \)). Certainly we can choose \(p_1 \) and \(q_1 \) common for both conditions c) and d). Now we suppose that the conditions a)–d) hold for any \(k < n \), in particular for \(\bar{n} \). We define \(E_n \) by the equality in a). Then we choose the positive integer \(l \) with
\[
\|\Phi_l(\mathbb{I}_{E_n}) - \mathbb{I}_{E_n}\|_{L^2} < \varepsilon.
\]
and denote \(g_n = \Phi_l(\mathbb{I}_{E_n}) \). Again applying (19) and using the boundedness of \(\text{supp} \hat{g}_n \) we may choose integers \(p_n, q_n \) satisfying c) and d) together. Using condition a), it is easy to check that the sets \(E_n \) satisfies the conditions
\[
E_j^{(k)} \cap E_j^{(k')} = \emptyset, \text{ if } j \neq j',
\]
\[
E_{2j-1}^{(k+1)} \cup E_{2j}^{(k+1)} \subset E_j^{(k)}, \quad |E_j^{(k)} \setminus (E_{2j-1}^{(k+1)} \cup E_{2j}^{(k+1)})| = 0.
\]
Using this properties we conclude
\[
(20) \quad \sum_{n=1}^\nu \mathbb{I}_{E_n}(x, y) = m, \text{ almost everywhere on } Q.
\]
Now we define
\[
(21) \quad f_n(x, y) = \frac{e^{i(p_n x + q_n y)} g_n(x, y)}{\sqrt{m}}.
\]
Condition (10) immediately follows from c), because
\[
\text{supp} \hat{f}_n = \text{supp} \hat{g}_n + (p_n, q_n).
\]
On the other hand taking a small \(\varepsilon \) by b) and (20) we obtain
\[
\sum_{n=1}^\nu \int_Q |f_n|^2 = \frac{1}{m} \sum_{n=1}^\nu \int_Q |g_n|^2 \leq \frac{2\nu}{m} \varepsilon^2 + \frac{2}{m} \sum_{n=1}^\nu \int_Q \mathbb{I}_{E_n} \leq c_1,
\]
which gives (17). Now consider functions
\[
(22) \quad \hat{f}_n = \text{Re } f_n \cdot \mathbb{I}_{E_n} = \frac{\cos(p_n x + q_n y) \cdot g_n(x, y) \cdot \mathbb{I}_{E_n}(x, y)}{\sqrt{m}}.
\]
Applying b) and (21) we get
\[
(23) \quad \|\hat{f}_n - \text{Re } f_n\|^2_{L^2} = \int_{\mathbb{R}^2 \setminus E_n} |\text{Re } f_n|^2 \leq \int_{\mathbb{R}^2 \setminus E_n} |f_n|^2 = \frac{1}{m} \int_{\mathbb{R}^2 \setminus E_n} |g_n|^2 \leq \frac{\varepsilon^2}{m}.
\]
On the other hand we have
\[
\max_{1 \leq n \leq N} \left| \sum_{j=1}^{n} f_{\sigma(j)} \right| \geq \max_{1 \leq n \leq N} \left| \sum_{j=1}^{n} \text{Re} f_{\sigma(j)} \right| \\
\geq \max_{1 \leq n \leq N} \left| \sum_{j=1}^{n} \tilde{f}_{\sigma(j)} \right| - \sum_{j=1}^{\nu} |\tilde{f}_j - \text{Re} f_j|.
\]

(24)

From (24) we obtain
\[
\left\| \sum_{j=1}^{\nu} |\tilde{f}_j - \text{Re} f_j| \right\|_{L^2} \leq \frac{\nu \varepsilon}{\sqrt{m}}.
\]

Therefore taking a small \(\varepsilon > 0 \) we can say that
\[
\left| \left\{ (x, y) \in Q : \max_{1 \leq n \leq \nu} \left| \sum_{j=1}^{n} \tilde{f}_{\sigma(j)}(x, y) \right| > c_1 \sqrt{\log \nu} \right\} \right| \leq \delta,
\]

(25)

for any given \(\delta > 0 \). From (24) and (25) we conclude that to prove (18) and also the lemma, it is enough to prove
\[
\left| \left\{ (x, y) \in Q : \max_{1 \leq n \leq \nu} \left| \sum_{j=1}^{n} \tilde{f}_{\sigma(j)}(x, y) \right| > c_1 \sqrt{\log \nu} \right\} \right| > c_2.
\]

(26)

Let us show that \(\tilde{f}_n \) is a tree-system, i.e. it satisfies (15). Since \(g_n > 0 \) from (22) we get that \(\tilde{f}_n(x, y) \) and \(\cos(p_n x + q_n y) \) have same sign in the set \(E_n \). Therefore by a) we obtain
\[
supp \tilde{f}_n \subset E_n = \{(x, y) \in E_n : (-1)^{j+1} \cos(p_n x + q_n y) > 0 \}
\]
\[
= \{(x, y) \in E_n : (-1)^{j+1} \tilde{f}_n(x, y) > 0 \}
\]
\[
= \{(x, y) \in E_n : (-1)^{j+1} \tilde{f}_n(x, y) > 0 \}
\]
\[
= \{(x, y) \in Q : (-1)^{j+1} \tilde{f}_n(x, y) > 0 \}.
\]

Hence \(\tilde{f}_n \) is a tree-system. So according to Lemma 1 we have
\[
\max_{1 \leq n \leq \nu} \left| \sum_{j=1}^{n} \tilde{f}_{\sigma(j)}(x, y) \right| \geq \frac{1}{3} \sum_{j=1}^{\nu} |\tilde{f}_j(x, y)|.
\]

(27)

From (21) and the conditions b) and d) we get
\[
\int_Q |\tilde{f}_n| = \frac{1}{\sqrt{m}} \int_{E_n} |g_n \cos(p_n x + q_n y)| dx dy \geq \frac{1}{\sqrt{m}} \int_{E_n} |\cos(p_n x + q_n y)| dx dy
\]
\[
- \frac{1}{\sqrt{m}} \int_{E_n} |(1 - g_n) \cos(p_n x + q_n y)| dx dy \geq \frac{|E_n|}{3\sqrt{m}} - \frac{\varepsilon}{\sqrt{m}}.
\]

If we take \(\varepsilon > 0 \) to be small, then from (20) we obtain
\[
\int_Q \sum_{j=1}^{\nu} |\tilde{f}_j| \geq \frac{1}{3\sqrt{m}} \sum_{n=1}^{\nu} |E_n| - \frac{\nu \varepsilon}{\sqrt{m}} \geq \sqrt{m}.
\]

Combining this and (27) we get
\[
\int_Q \max_{1 \leq n \leq \nu} \left| \sum_{j=1}^{n} \tilde{f}_{\sigma(j)}(x, y) \right| \geq \sqrt{m}.
\]

(28)
On the other hand by (20), (21) and b) for any \((x, y) \in Q\) we have
\[
\max_{1 \leq n \leq N} \left| \sum_{j=1}^{n} \hat{f}_{\sigma(j)}(x, y) \right| \leq \sum_{j=1}^{\nu} \left| \hat{f}_{j}(x, y) \right| \leq \frac{1}{\sqrt{m}} \sum_{j=1}^{\nu} \|E_n(x, y)\| \leq \sqrt{m}.
\]
From (28) and (29) follows (26). \(\square\)

Proof of Theorem 2. For any region \(S \subset \mathbb{R}^2\) we denote
\[
T_S f(x, y) = \int_{S} e^{i(x+\eta y)} \hat{f}(\xi, \eta) d\xi d\eta.
\]
Since the multiplier for the Hilbert transform is \(i \cdot \text{sign} x \), for any direction \(u = (\cos \theta, \sin \theta) \) we have
\[
\hat{H}_u f(x, y) = i \cdot \text{sign}(x \cos \theta + y \sin \theta) \hat{f}(x, y).
\]
Thus we conclude
\[
H_u f = i(2 \cdot T_{u_n} f - f)
\]
where
\[
\Gamma_u = \{(x, y) \in \mathbb{R}^2 : x \cos \theta + y \sin \theta \geq 0\}.
\]
Denote
\[
T_U f = \sup_{u \in U} |T_{u_n} f|.
\]
Let \(U = \{u_k = (\cos \theta_k, \sin \theta_k) : k = 1, 2, \cdots, N\}\) be the set of directions from Theorem 2. Without loss of generality we can assume \(\theta_k \in (0, \pi/2)\), \(\theta_1 < \theta_2 < \cdots < \theta_N\) and \(N = 2^m\). According to (30), to prove Theorem 2 it is enough to prove that
\[
\|T_U f\|_{L^1} \geq \sqrt{\log N} \|f\|_{L^2}
\]
for some function \(f \in L^2(\mathbb{R}^2)\). We denote by \(S_k, k = 1, 2, \cdots, \nu = 2^m - 1\), the sectors obtained by the vectors \((u_k)^\perp = (\cos \theta_k, -\sin \theta_k)\) and \((u_{k+1})^\perp = (\cos \theta_{k+1}, -\sin \theta_{k+1})\), i.e.
\[(32) \quad S_k = \{(x, y) \in \mathbb{R}^2 : x \geq 0, x \cos \theta_k + y \sin \theta_k \geq 0, x \cos \theta_{k+1} + y \sin \theta_{k+1} \leq 0\}.
\]
Hence if we suppose
\[
\text{supp} \hat{f} \subset \bigcup_{k=1}^{\nu} S_k,
\]
then we can write
\[
(33) \quad T_U f(x, y) = \sup_{1 \leq l \leq \nu} \left| \sum_{k=1}^{l} T_{S_k} f(x, y) \right|.
\]
We define functions \(f_n\) satisfying the conditions of Lemma 2 corresponding to the sectors \(S'_n = S_{\sigma^{-1}(n)}\) in (32). Denote
\[
f = \sum_{k=1}^{\nu} f_k.
\]
Since \(S_n\) are mutually disjoint the functions \(f_n\) are orthogonal. Thus by (17) we get \(\|f\|_{L^2} \leq c_1\). From (16) we have supp \(\hat{f}_n \subset S_{\sigma^{-1}(n)}\), \(n = 1, 2, \cdots, \nu\), i.e. supp \(f_{\sigma(n)} \subset S_n\) and therefore
\[
T_{S_n} f(x) = f_n(x).
\]
According to (33) we obtain
\[T_U f(x, y) = \max_{1 \leq \ell \leq N} \left| \sum_{j=1}^{\ell} f_{\sigma(j)}(x, y) \right|. \]

Using (17) and (18), we get
\[\left| \{(x, y) \in Q : T_U f(x, y) > c_3 \sqrt{\log \nu} \} \right| > c_2, \]
and therefore
\[\| T_U f \|_{L^p} \gtrsim \sqrt{\log N} \| f \|_{L^2}. \]

\[\Box \]

References

12. B. S. Kashin and A. A. Saakian, Orthogonal series, AMS, Providence, R.I., 1989. MR1007141 (90a:42001)

