Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



Stable constant mean curvature hypersurfaces

Authors: Maria Fernanda Elbert, Barbara Nelli and Harold Rosenberg
Journal: Proc. Amer. Math. Soc. 135 (2007), 3359-3366
MSC (2000): Primary 53C42
Published electronically: June 19, 2007
MathSciNet review: 2322768
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ {\mathcal N}^{n+1}$ be a Riemannian manifold with sectional curvatures uniformly bounded from below. When $ n=3,4,$ we prove that there are no complete (strongly) stable $ H$-hypersurfaces, without boundary, provided $ \vert H\vert$ is large enough. In particular, we prove that there are no complete strongly stable $ H$-hypersurfaces in $ \mathbb{R}^{n+1}$ without boundary, $ H\not=0.$

References [Enhancements On Off] (What's this?)

  • 1. Lucas Barbosa and Pierre Bérard, Eigenvalue and “twisted” eigenvalue problems, applications to CMC surfaces, J. Math. Pures Appl. (9) 79 (2000), no. 5, 427–450 (English, with English and French summaries). MR 1759435,
  • 2. J.L. BARBOSA, M. DO CARMO: Stability of Hypersurfaces with Constant Mean Curvature, Math. Zeit. 185, 3 (1984) 339-353. MR 0731682 (85k:58021c)
  • 3. X. CHENG: On Constant Mean Curvature Hypersurfaces with Finite Index, Preprint, to be published in Archiv der Mathematik.
  • 4. M. DO CARMO, C.K. PENG: Stable Complete Minimal Hypersurfaces, Proceedings of the 1980 Beijing Symposium on Diff. Geom. and Diff. Eq., Science Press, Beijing, (1982) 1349-1358. MR 0714373 (85e:53007)
  • 5. Ronaldo F. De Lima and William Meeks III, Maximum principles at infinity for surfaces of bounded mean curvature in ℝ³ and ℍ³, Indiana Univ. Math. J. 53 (2004), no. 5, 1211–1223. MR 2104275,
  • 6. D. FISCHER-COLBRIE: On Complete Minimal Surfaces with finite Morse Index in three Manifolds, Inv. Math. 82 (1985) 121-132. MR 0808112 (87b:53090)
  • 7. B. NELLI, H. ROSENBERG: Global Properties of Constant Mean Curvature Surfaces in $ \mathbb{H}^2\times\mathbb{R}$, to appear in Pacific Jour. of Math. (2004),$ \thicksim$rosen.
  • 8. Harold Rosenberg, Soap bubble clusters and constant mean curvature surfaces, Surfaces minimales et solutions de problèmes variationnels, SMF Journ. Annu., vol. 1993, Soc. Math. France, Paris, 1993, pp. 38. MR 1483380
  • 9. A. ROS, H. ROSENBERG: Properly Embedded Surfaces with Constant Mean Curvature, Preprint (2001),$ \thicksim$rosen.
  • 10. R. Schoen and S.-T. Yau, Lectures on differential geometry, Conference Proceedings and Lecture Notes in Geometry and Topology, I, International Press, Cambridge, MA, 1994. Lecture notes prepared by Wei Yue Ding, Kung Ching Chang [Gong Qing Zhang], Jia Qing Zhong and Yi Chao Xu; Translated from the Chinese by Ding and S. Y. Cheng; Preface translated from the Chinese by Kaising Tso. MR 1333601
  • 11. Ying Shen and Shunhui Zhu, Rigidity of stable minimal hypersurfaces, Math. Ann. 309 (1997), no. 1, 107–116. MR 1467649,
  • 12. Yi Bing Shen and Xiao Hua Zhu, On complete hypersurfaces with constant mean curvature and finite 𝐿^{𝑝}-norm curvature in 𝐑ⁿ⁺¹, Acta Math. Sin. (Engl. Ser.) 21 (2005), no. 3, 631–642. MR 2145917,

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 53C42

Retrieve articles in all journals with MSC (2000): 53C42

Additional Information

Maria Fernanda Elbert
Affiliation: Instituto de Matematica, Universidade Federal do Rio de Janeiro, Rio de Janiero, Brazil

Barbara Nelli
Affiliation: Dipartimento di Matematica Pura e Applicata, Universitá di L’Aquila, Via Vetoio, 67010 Coppito L’Aquila, Italy

Harold Rosenberg
Affiliation: Institut de Mathématiques, Université Paris VII, 2 place Jussieu, 75251 Paris, France

Received by editor(s): January 24, 2006
Received by editor(s) in revised form: May 17, 2006
Published electronically: June 19, 2007
Additional Notes: The first author was partially supported by CNPq and Faperj.
Communicated by: Richard A. Wentworth
Article copyright: © Copyright 2007 American Mathematical Society

American Mathematical Society