Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



Orders at infinity of modular forms with Heegner divisors

Authors: Carl Erickson, Alison Miller and Aaron Pixton
Journal: Proc. Amer. Math. Soc. 135 (2007), 3115-3126
MSC (2000): Primary 11F33; Secondary 11F11, 11E45
Published electronically: June 21, 2007
MathSciNet review: 2322741
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Borcherds described the exponents $ a(n)$ in product expansions $ f = q^h \prod_{n = 1}^{\infty} (1-q^n)^{a(n)}$ of meromorphic modular forms with a Heegner divisor. His description does not directly give any information about $ h$, the order of vanishing at infinity of $ f$. We give $ p$-adic formulas for $ h$ in terms of generalized traces given by sums over the zeroes and poles of $ f$. Specializing to the case of the Hilbert class polynomial $ f = \mathcal H_d(j(z))$ yields $ p$-adic formulas for class numbers that generalize past results of Bruinier, Kohnen and Ono. We also give new proofs of known results about the irreducible decomposition of the supersingular polynomial $ S_p(X)$.

References [Enhancements On Off] (What's this?)

  • 1. Richard E. Borcherds, Automorphic forms on 𝑂_{𝑠+2,2}(𝐑)⁺ and generalized Kac-Moody algebras, Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Zürich, 1994) Birkhäuser, Basel, 1995, pp. 744–752. MR 1403974
  • 2. Jan H. Bruinier, Winfried Kohnen, and Ken Ono, The arithmetic of the values of modular functions and the divisors of modular forms, Compos. Math. 140 (2004), no. 3, 552–566. MR 2041768, 10.1112/S0010437X03000721
  • 3. Jan H. Bruinier and Ken Ono, The arithmetic of Borcherds’ exponents, Math. Ann. 327 (2003), no. 2, 293–303. MR 2015071, 10.1007/s00208-003-0452-7
  • 4. Max Deuring, Die Typen der Multiplikatorenringe elliptischer Funktionenkörper, Abh. Math. Sem. Hansischen Univ. 14 (1941), 197–272 (German). MR 0005125
  • 5. Noam D. Elkies, The existence of infinitely many supersingular primes for every elliptic curve over 𝑄, Invent. Math. 89 (1987), no. 3, 561–567. MR 903384, 10.1007/BF01388985
  • 6. M. Kaneko and D. Zagier, Supersingular $ j$-invariants, hypergeometric series, and Atkin's orthogonal polynomials, Computational perspectives on number theory (Chicago, IL, 1995), AMS/IP Stud. Adv. Math., vol. 7, Amer. Math. Soc., Providence, RI, 1998, pp. 97-126.
  • 7. Ken Ono, The web of modularity: arithmetic of the coefficients of modular forms and 𝑞-series, CBMS Regional Conference Series in Mathematics, vol. 102, Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI, 2004. MR 2020489
  • 8. Jean-Pierre Serre, Formes modulaires et fonctions zêta 𝑝-adiques, Modular functions of one variable, III (Proc. Internat. Summer School, Univ. Antwerp, 1972) Springer, Berlin, 1973, pp. 191–268. Lecture Notes in Math., Vol. 350 (French). MR 0404145
  • 9. H. P. F. Swinnerton-Dyer, On 𝑙-adic representations and congruences for coefficients of modular forms, Modular functions of one variable, III (Proc. Internat. Summer School, Univ. Antwerp, 1972) Springer, Berlin, 1973, pp. 1–55. Lecture Notes in Math., Vol. 350. MR 0406931
  • 10. Don Zagier, Traces of singular moduli, Motives, polylogarithms and Hodge theory, Part I (Irvine, CA, 1998), Int. Press Lect. Ser., vol. 3, Int. Press, Somerville, MA, 2002, pp. 211–244. MR 1977587

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 11F33, 11F11, 11E45

Retrieve articles in all journals with MSC (2000): 11F33, 11F11, 11E45

Additional Information

Carl Erickson
Affiliation: Department of Mathematics, Stanford University, Stanford, California 94305

Alison Miller
Affiliation: 320 Dunster House Mail Center, Cambridge, Massachusetts 02138

Aaron Pixton
Affiliation: 741 Echo Road, Vestal, New York 13850

Received by editor(s): June 10, 2005
Received by editor(s) in revised form: July 26, 2006
Published electronically: June 21, 2007
Communicated by: Ken Ono
Article copyright: © Copyright 2007 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.