A strong comparison principle for the -Laplacian

Authors:
Paolo Roselli and Berardino Sciunzi

Journal:
Proc. Amer. Math. Soc. **135** (2007), 3217-3224

MSC (2000):
Primary 35J70; Secondary 35B05

Published electronically:
May 14, 2007

MathSciNet review:
2322752

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We consider weak solutions of the differential inequality of p-Laplacian type

**1.**Mabel Cuesta and Peter Takáč,*A strong comparison principle for the Dirichlet 𝑝-Laplacian*, Reaction diffusion systems (Trieste, 1995) Lecture Notes in Pure and Appl. Math., vol. 194, Dekker, New York, 1998, pp. 79–87. MR**1472511****2.**Mabel Cuesta and Peter Takáč,*A strong comparison principle for positive solutions of degenerate elliptic equations*, Differential Integral Equations**13**(2000), no. 4-6, 721–746. MR**1750048****3.**Lucio Damascelli,*Comparison theorems for some quasilinear degenerate elliptic operators and applications to symmetry and monotonicity results*, Ann. Inst. H. Poincaré Anal. Non Linéaire**15**(1998), no. 4, 493–516 (English, with English and French summaries). MR**1632933**, 10.1016/S0294-1449(98)80032-2**4.**Lucio Damascelli and Berardino Sciunzi,*Regularity, monotonicity and symmetry of positive solutions of 𝑚-Laplace equations*, J. Differential Equations**206**(2004), no. 2, 483–515. MR**2096703**, 10.1016/j.jde.2004.05.012**5.**Lucio Damascelli and Berardino Sciunzi,*Harnack inequalities, maximum and comparison principles, and regularity of positive solutions of 𝑚-Laplace equations*, Calc. Var. Partial Differential Equations**25**(2006), no. 2, 139–159. MR**2188744**, 10.1007/s00526-005-0337-6**6.**E. DiBenedetto,*𝐶^{1+𝛼} local regularity of weak solutions of degenerate elliptic equations*, Nonlinear Anal.**7**(1983), no. 8, 827–850. MR**709038**, 10.1016/0362-546X(83)90061-5**7.**Mohammed Guedda and Laurent Véron,*Quasilinear elliptic equations involving critical Sobolev exponents*, Nonlinear Anal.**13**(1989), no. 8, 879–902. MR**1009077**, 10.1016/0362-546X(89)90020-5**8.**Gary M. Lieberman,*Boundary regularity for solutions of degenerate elliptic equations*, Nonlinear Anal.**12**(1988), no. 11, 1203–1219. MR**969499**, 10.1016/0362-546X(88)90053-3**9.**M. Lucia and S. Prashanth,*Strong comparison principle for solutions of quasilinear equations*, Proc. Amer. Math. Soc.**132**(2004), no. 4, 1005–1011 (electronic). MR**2045415**, 10.1090/S0002-9939-03-07285-X**10.**Patrizia Pucci and James Serrin,*The strong maximum principle revisited*, J. Differential Equations**196**(2004), no. 1, 1–66. MR**2025185**, 10.1016/j.jde.2003.05.001**11.**B. Sciunzi,*Some results on the qualitative properties of positive solutions of quasilinear elliptic equations*, NoDEA Nonlinear Differential Equations Appl.,*to appear*.**12.**Peter Tolksdorf,*Regularity for a more general class of quasilinear elliptic equations*, J. Differential Equations**51**(1984), no. 1, 126–150. MR**727034**, 10.1016/0022-0396(84)90105-0**13.**J. L. Vázquez,*A strong maximum principle for some quasilinear elliptic equations*, Appl. Math. Optim.**12**(1984), no. 3, 191–202. MR**768629**, 10.1007/BF01449041

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (2000):
35J70,
35B05

Retrieve articles in all journals with MSC (2000): 35J70, 35B05

Additional Information

**Paolo Roselli**

Affiliation:
Dipartimento di Matematica, Universà di Roma “Tor Vergata”, Via della Ricerca Scientifica 00133 Roma, Italy

Email:
roselli@mat.uniroma2.it

**Berardino Sciunzi**

Affiliation:
Dipartimento di Matematica, Università di Roma “Tor Vergata”, Via della Ricerca Scientifica, 00133 Roma, Italy

Email:
sciunzi@mat.uniroma2.it

DOI:
https://doi.org/10.1090/S0002-9939-07-08847-8

Keywords:
$p$-Laplace operator,
geometric and qualitative properties of the solutions,
comparison principle.

Received by editor(s):
April 14, 2006

Received by editor(s) in revised form:
June 19, 2006

Published electronically:
May 14, 2007

Additional Notes:
Supported by MURST, Project “Metodi Variazionali ed Equazioni Differenziali Non Lineari”

Communicated by:
David S. Tartakoff

Article copyright:
© Copyright 2007
American Mathematical Society

The copyright for this article reverts to public domain 28 years after publication.