Semiprime smash products and stable prime radicals for PIalgebras
Authors:
V. Linchenko and S. Montgomery
Journal:
Proc. Amer. Math. Soc. 135 (2007), 30913098
MSC (2000):
Primary 16W30, 16N20, 16R99, 16S40
Published electronically:
June 20, 2007
MathSciNet review:
2322738
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: Assume that is a finitedimensional Hopf algebra over a field and that is an module algebra satisfying a polynomial identity (PI). We prove that if is semisimple and is semiprime, then is semiprime. If is cosemisimple, we show that the prime radical of is stable.
 [A]
S.
A. Amitsur, A generalization of Hilbert’s
Nullstellensatz, Proc. Amer. Math. Soc. 8 (1957), 649–656.
MR
0087644 (19,384a), http://dx.doi.org/10.1090/S00029939195700876449
 [B]
G. M. Bergman, On Jacobson radicals of graded rings, preprint, UC Berkeley, 1975.
 [Br]
A. Braun, Hopf algebra versions of some classical finite group action theorems, preprint (1991, revised 2005).
 [CF]
Miriam
Cohen and Davida
Fishman, Hopf algebra actions, J. Algebra 100
(1986), no. 2, 363–379. MR 840582
(87i:16012), http://dx.doi.org/10.1016/00218693(86)900827
 [CM]
M.
Cohen and S.
Montgomery, Groupgraded rings, smash products,
and group actions, Trans. Amer. Math. Soc.
282 (1984), no. 1,
237–258. MR
728711 (85i:16002), http://dx.doi.org/10.1090/S00029947198407287114
 [EG]
Pavel
Etingof and Shlomo
Gelaki, On finitedimensional semisimple and cosemisimple Hopf
algebras in positive characteristic, Internat. Math. Res. Notices
16 (1998), 851–864. MR 1643702
(99i:16068), http://dx.doi.org/10.1155/S107379289800052X
 [H]
I. N. Herstein, Noncommutative Rings, 2nd Edition, MAA, 1996.
 [J]
Nathan
Jacobson, Structure of rings, American Mathematical Society
Colloquium Publications, Vol. 37. Revised edition, American Mathematical
Society, Providence, R.I., 1964. MR 0222106
(36 #5158)
 [La]
Richard
Gustavus Larson, Characters of Hopf algebras, J. Algebra
17 (1971), 352–368. MR 0283054
(44 #287)
 [LaR]
Richard
G. Larson and David
E. Radford, Semisimple cosemisimple Hopf algebras, Amer. J.
Math. 110 (1988), no. 1, 187–195. MR 926744
(89a:16011), http://dx.doi.org/10.2307/2374545
 [LaR2]
Richard
G. Larson and David
E. Radford, Finitedimensional cosemisimple Hopf algebras in
characteristic 0 are semisimple, J. Algebra 117
(1988), no. 2, 267–289. MR 957441
(89k:16016), http://dx.doi.org/10.1016/00218693(88)90107X
 [L]
V.
Linchenko, Nilpotent subsets of Hopf module algebras, Groups,
rings, Lie and Hopf algebras (St. John’s, NF, 2001) Math. Appl.,
vol. 555, Kluwer Acad. Publ., Dordrecht, 2003, pp. 121–127.
MR
1995055 (2004g:16040)
 [LMS]
V.
Linchenko, S.
Montgomery, and L.
W. Small, Stable Jacobson radicals and semiprime smash
products, Bull. London Math. Soc. 37 (2005),
no. 6, 860–872. MR 2186719
(2006k:16084), http://dx.doi.org/10.1112/S0024609305004662
 [Lo]
Christian
Lomp, When is a smash product semiprime? A partial answer, J.
Algebra 275 (2004), no. 1, 339–355. MR 2047452
(2005b:16068), http://dx.doi.org/10.1016/j.jalgebra.2003.07.017
 [M]
Susan
Montgomery, Hopf algebras and their actions on rings, CBMS
Regional Conference Series in Mathematics, vol. 82, Published for the
Conference Board of the Mathematical Sciences, Washington, DC; by the
American Mathematical Society, Providence, RI, 1993. MR 1243637
(94i:16019)
 [M2]
S.
Montgomery, Primitive ideals and Jacobson radicals in Hopf Galois
extensions, Algebraic structures and their representations, Contemp.
Math., vol. 376, Amer. Math. Soc., Providence, RI, 2005,
pp. 333–344. MR 2147033
(2006b:16064), http://dx.doi.org/10.1090/conm/376/06969
 [MS]
S.
Montgomery and H.J.
Schneider, Prime ideals in Hopf Galois extensions, Israel J.
Math. 112 (1999), 187–235. MR 1715517
(2001e:16075), http://dx.doi.org/10.1007/BF02773482
 [P]
Donald
S. Passman, Infinite crossed products, Pure and Applied
Mathematics, vol. 135, Academic Press, Inc., Boston, MA, 1989. MR 979094
(90g:16002)
 [SvO]
S. Skryabin and F. van Oystaeyen, The Goldie theorem for semiprime algebras, J. Algebra 305 (2006), 292320.
 [A]
 S. A. Amitsur, A generalization of Hilbert's Nullstellensatz, AMS Proceedings 8 (1957), 649656. MR 0087644 (19:384a)
 [B]
 G. M. Bergman, On Jacobson radicals of graded rings, preprint, UC Berkeley, 1975.
 [Br]
 A. Braun, Hopf algebra versions of some classical finite group action theorems, preprint (1991, revised 2005).
 [CF]
 M. Cohen and D. Fischman, Hopf Algebras Actions, J. Algebra 100 (1986), 363379. MR 840582 (87i:16012)
 [CM]
 M. Cohen and S. Montgomery, Group graded rings, smash products, and group actions, AMS Transactions 282 (1984), 237258; Addendum AMS Transactions 300 (1987), 810811. MR 728711 (85i:16002)
 [EG]
 P. Etingof and S. Gelaki, On finitedimensional semisimple and cosemisimple Hopf algebras in prime charactersistic, Inter. Math. Research Notices 16 (1998), 851864. MR 1643702 (99i:16068)
 [H]
 I. N. Herstein, Noncommutative Rings, 2nd Edition, MAA, 1996.
 [J]
 N. Jacobson, Structure of Rings, revised edition, AMS Colloquium Publications vol 37, 1964. MR 0222106 (36:5158)
 [La]
 R. G. Larson, Characters of Hopf algebras, J. Algebra 17 (1971), 352368. MR 0283054 (44:287)
 [LaR]
 R. G. Larson and D. Radford, Semisimple cosemisimple Hopf algebras, Amer. J. Math. 110 (1988), 187195. MR 926744 (89a:16011)
 [LaR2]
 R. G. Larson and D. Radford, Fiinite dimensional cosemisimple Hopf algebras in characteristic 0 are semisimple, J. Algebra 117 (1988), 267289. MR 957441 (89k:16016)
 [L]
 V. Linchenko, Nilpotent subsets of Hopf module algebras, Groups, Rings, Lie, and Hopf Algebras (Yu. Bahturin, Editor), Proceedings of the 2001 St. Johns Conference, Kluwer, 2003, 121127. MR 1995055 (2004g:16040)
 [LMS]
 V. Linchenko, S. Montgomery, and L. W. Small, Stable Jacobson radicals and semiprime smash products, Bulletin London Math. Soc. 37 (2005), 860872. MR 2186719 (2006k:16084)
 [Lo]
 C. Lomp, When is a Smash Product Semiprime? A Partial Answer, J. Algebra 275, (2004) 339355. MR 2047452 (2005b:16068)
 [M]
 S. Montgomery, Hopf Algebras and their Actions on Rings, CBMS Lecture Notes vol. 82, AMS, Providence, 1993. MR 1243637 (94i:16019)
 [M2]
 S. Montgomery, Primitive ideals and Jacobson radicals in Hopf Galois extensions, in Algebraic structures and their representations, 333344, Contemp. Math 376, AMS, Providence, RI, 2005. MR 2147033 (2006b:16064)
 [MS]
 S. Montgomery and H.J. Schneider, Prime ideals in Hopf Galois extensions, Israel J. Math. 112 (1999), 187235. MR 1715517 (2001e:16075)
 [P]
 D. S. Passman, Infinite Crossed Products, Academic Press, 1989. MR 979094 (90g:16002)
 [SvO]
 S. Skryabin and F. van Oystaeyen, The Goldie theorem for semiprime algebras, J. Algebra 305 (2006), 292320.
Similar Articles
Retrieve articles in Proceedings of the American Mathematical Society
with MSC (2000):
16W30,
16N20,
16R99,
16S40
Retrieve articles in all journals
with MSC (2000):
16W30,
16N20,
16R99,
16S40
Additional Information
V. Linchenko
Affiliation:
Yerakhtur, Shilovsky District, Ryazansky Region, Russia 391534
Email:
linchenk@mail.ru
S. Montgomery
Affiliation:
Department of Mathematics, University of Southern California, Los Angeles, California 900891113
Email:
smontgom@math.usc.edu
DOI:
http://dx.doi.org/10.1090/S0002993907088491
PII:
S 00029939(07)088491
Received by editor(s):
March 6, 2006
Received by editor(s) in revised form:
July 15, 2006
Published electronically:
June 20, 2007
Additional Notes:
The second author was supported by NSF grant DMS0401399.
Communicated by:
Martin Lorenz
Article copyright:
© Copyright 2007
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.
