Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

The link of the germ of a semi-algebraic metric space


Author: Guillaume Valette
Journal: Proc. Amer. Math. Soc. 135 (2007), 3083-3090
MSC (2000): Primary 14P10, 32B25, 154E40
DOI: https://doi.org/10.1090/S0002-9939-07-08878-8
Published electronically: June 20, 2007
MathSciNet review: 2322737
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper we investigate the metric properties of semi-algebraic germs. More precisely we introduce a counterpart to the notion of link for semi-algebraic metric spaces, which is often used to study the topology. We prove that it totally determines the metric type of the germ. We give a nice consequence for semi-algebraically bi-Lipschitz homeomorphic semi-algebraic germs.


References [Enhancements On Off] (What's this?)

  • [B] L. Birbrair, Local bi-Lipschitz classification of $ 2$-dimensional semialgebraic sets. Houston J. Math. 25 (1999), no. 3, 453-472. MR 1730886 (2000j:14091)
  • [BB1] L. Birbrair, J. P. Brasselet, Metric homology. Comm. Pure Appl. Math. 53 (2000), no. 11, 1434-1447. MR 1773415 (2001h:14075)
  • [BB2] L. Birbrair, J. P. Brasselet, Metric homology for isolated conical singularities. Bull. Sci. Math. 126 (2002), no. 2, 87-95. MR 1906238 (2003d:14070)
  • [BCR1] J. Bochnak, M. Coste, M-F. Roy, Géométrie Algébrique Réelle, Ergebnisse der Math. 12, Springer-Verlag (1987). MR 949442 (90b:14030)
  • [BCR2] J. Bochnak, M. Coste, M-F. Roy, Real Algebraic Geometry, Ergebnisse der Math. 36, Springer-Verlag (1998). MR 1659509 (2000a:14067)
  • [C] M. Coste, An introduction to O-minimal Geometry, Dip. Mat. Univ. Pisa, Dottorato di Ricerca in Matematica, Instituti Editoriali e Poligrafici Internazionali, Pisa (2000).
  • [CK] M. Coste, K. Kurdyka, On the link of a stratum in a real algebraic set. Topology 31 (1992), no. 2, 323-336. MR 1167174 (93d:14088)
  • [vDS] L. van den Dries, P. Speissegger. O-minimal preparation theorems. Model theory and applications, 87-116, Quad. Mat., 11, Aracne, Rome, 2002. MR 2159715 (2006m:03063)
  • [M] T. Mostowski, Lipschitz equisingularity. Dissertationes Math. (Rozprawy Mat.) 243 (1985), 46 pp. MR 808226 (87e:32008)
  • [S] M. Shiota, Geometry of subanalytic and semialgebraic sets. Progress in Mathematics, 150. Birkhäuser Boston, Inc., Boston, MA, 1997. MR 1463945 (99b:14061)
  • [V1] G. Valette, Lipschitz triangulations. Illinois J. of Math., Vol. 49, No. 3, Fall 2005, 953-979. MR 2210270
  • [V2] G. Valette, Hardt's theorem: A bi-Lipschitz version. C. R. Acad. Sci. Paris, Ser. I 340 (2005), issue 12, 895-900. MR 2152275 (2006a:14097)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 14P10, 32B25, 154E40

Retrieve articles in all journals with MSC (2000): 14P10, 32B25, 154E40


Additional Information

Guillaume Valette
Affiliation: Instytut Matematyki, Uniwersytet Jagielloński, ul. Reymonta 4, 30-059 Kraków, Poland
Email: Guillaume.Valette@im.uj.edu.pl

DOI: https://doi.org/10.1090/S0002-9939-07-08878-8
Received by editor(s): September 23, 2005
Received by editor(s) in revised form: July 14, 2006
Published electronically: June 20, 2007
Additional Notes: This paper was partially supported by the RAAG Network
Communicated by: David Preiss
Article copyright: © Copyright 2007 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society